Схемы тесла: схема простейшего бестопливного генератора своими руками

Трансформатор (катушка) тесла принцип работы, схема, применение

Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.

Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

катушка тесла

Принцип действия трансформатора Тесла похож на работу обычного  трансформатора.   Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.

трансформатор тесла схема

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали  и конструкции трансформатора Тесла

Конструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии  и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом,  увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или  коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC  и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

первичные обмотки трансформатора тесла

Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!

Стримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться  в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое  применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3.  На транзисторах.

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Видео: Трансформатор Тесла

Музыкальная SSTC | Катушки Тесла и все-все-все

Я писал ранее про способы использования трансформатора Тесла для извлечения музыки и звуков, и две основные разновидности способа модуляции плазменного разряда (для импульсных катушек и для непрерывных соответственно): монофонический частотный и полноспектровый амплитудный. Музыкальные катушки Тесла, сделанные по первому принципу (в основном это DRSSTC), принимают на вход MIDI-сигнал, и издают трещащие пронзительные звуки, напоминающие мелодии со старых мобильников; звуковые трансформаторы Тесла второго типа работают как ионофоны, т. е. просто усиливают поступающий на вход сигнал с плеера или другого источника звука, как это делает любой звуковой усилитель, с той лишь разницей, что источником звука здесь является разогретая плазма разряда.

На данный момент известно два принципиально различных способа сделать такую звуковую катушку Тесла на транзисторах. Это использование buck-преобразователя в питании силовой части схемы  (амплитудная модуляция) и классического автогенератора, или же использование резонансного драйвера полумоста (LLC) (частотно-амплитудная модуляция), вместе с фазовой автоподстройкой частоты (ФАПЧ, PLL). На баке сделана моя первая звуковая катушка, которая подробно описана во второй половине данной статьи. У неё есть ряд недостатков: низкая громкость звука, высокий уровень помех в звуке, большая CW-составляющая в разряде (грубо говоря, только малая часть объёма плазмы меняет свой размер в такт звуковой частоте). Их лишена вторая упомянутая топология, которая, насколько мне известно, ранее практически не применялась при построении звуковых катушек.

Амплитудный сигнал с плеера, поступающий на вход драйвера, преобразуется в, назовём это так, отклонения реальной частоты драйвера от некоторой частоты X, которая совпадает в случае максимальной выставленной громкости с резонансной частотой катушки, поскольку берётся ФАПЧой через антенну со вторички. Если с плеера поступает сигнал, скажем, в 500 герц, с амплитудой от 0 до максимума плеера (или до ограничения, установленного, как в этой катушке, двумя диодами Шоттки (+-300 милливольт), чтобы не сжечь вход драйвера возможными наводками на звуковой кабель), то 500 раз в секунду происходит отстройка частоты от заданной ФАПЧ средней до некоторой граничной. Честно скажу, не знаю, какова эта граничная частота в данном случае, но, скорее всего, 10% от резонансной достаточно для полного пропадания стримера.

При регулировке же громкости в драйвере происходит смещение частоты X от резонанса так, чтобы максимальная громкость от стримера регулировалась пропорционально задаваемой на плеере. Резонансная частота такого музыкального трансформатора Тесла выполняет функцию несущей частоты дискретизации. 160 кГц как в этой конкретной катушке Тесла, вполне достаточно для воспроизведения любой звуковой частоты в музыке (до 10 кгц).

ФАПЧ в такой топологии выполняет функцию поддержания резонансной частоты, относительно которой смещает свой выход  драйвер. Без неё не будет автогенерации, и при поднесении руки, плазмашара, да даже просто при перемещении катушки в другое помещение она выйдет из рабочего режима, с непредвиденными последствиями.

Собственно, это всё. Основная сложность здесь — разработка драйвера и настройка PLL: она требует одновременной регулировки сразу двух параметров: положения и размера антеннки вместе с подкручиванием переменного резистора. Антеннка требуется совсем небольшая, около 5-8 см.

В качестве постоянно упоминающегося здесь LLC-драйвера выступает IRS27951, весьма неплохо пригодная для изготовления простых полумостов, а также для подобных экзотических применений. На её основе на данный момент сделана куча мелких полумостов для питания всего подряд, питальник для электролизёрной горелки, с обратной связью по датчику давления для поддержания постоянного давления на выходе вне зависимости от диаметра сопла горелки, на ней же сооружена мини-индукционная печь для прогрева электродов неоновых трубок, и теперь вот и катушка Тесла с музыкой. Следует аккуратно выбирать рабочую резонансную частоту: выше 200 кГц эта микросхема уже практически не работает.
ФАПЧ стандартная: CD4046. Старая, известная своей капризностью и трудностью в настройке микросхема. Но здесь от неё используется только часть, а именно фазовый компаратор, используемый для поддержания автогенерации.

Параметры обмоток ничем особо не выделяются: вторичная 16х25 см проводом 0.35, первичная — 8 витков толстой медью, ниже начала вторичной обмотки, чтобы уменьшить коэффициент связи и ток контура. Полумост сооружён на IRGP50B60, управление через GDT. Тороид мучительно спаян из алюминиевой присадки для аргонового сварочника — зато прочный и жёсткий.

Катушка выдаёт разряды длиной от 5 до 20-25 см (в зависимости от мощности звукового сигнала), в псевдоимпульсном режиме. То есть, выглядят они как импульсные, и так же больно щиплются, но на деле это CW. Катушка создаёт крайне мощное поле вокруг себя — лампы загораются на расстоянии до двух и более метров. Громкость музыки поразительная, в несколько раз выше, чем у старого варианта на buck-конвертере.

Для дополнительного пафоса сделал для катушки подсвечиваемый шильдик из фольгированного текстолита. Получилось, на мой взгляд, довольно неплохо.

На данный момент катушка приобретена и находится в использовании театром «ТиПо», занимающимся организацией и проведением детских праздников. На видеозаписи можно посмотреть профессионально сделанное промо с её использованием!

При использовании в качестве терминала длинной изогнутой стальной проволоки, за счёт ионного ветра она начинает забавно дёргаться. Иногда в такт музыке.


Ниже находится старая статья про музыкальный трансформатор Тесла на buck-конвертере, добавленная сюда для полноты картины и описания сути музыкальных катушек Тесла.

Огромное преимущество транзисторных трансформаторов Тесла, выгодно отличающее их от искровых: их достаточно легко можно заставить петь, т.е. издавать звуки плазмой их разряда (ламповые тоже способны на это, но усилий требуется значительно больше, и удачных прецедентов сборки маловато). Сам принцип аудиомодуляции плазмы известен довольно давно; в СССР даже были концертного типа установки, модулировавшие факельный разряд звуком, устанавливавшиеся иногда (как мне рассказывали) в летних кинотеатрах. Есть даже современные профессиональные аудиосистемы, использующие электрическую дугу для издавания звука (ионофоны, плазмафоны и т. п.). Поскольку разряд катушки Тесла — такая же высоковольтная плазма, как и в факельниках или ионофонах, его можно промодулировать звуковой частотой, получив на выходе помимо электрического разряда ещё и звук.

Основных способов модуляции два: частотная и амплитудная. Частотная модуляция основывается на изменении частоты прерываний в интерраптере, при управлении с микроконтроллера, совместимого с MIDI или аналогичным форматом, или с компьютера. Основное её преимущество в возможности использования с импульсными катушками — ISSTC и DRSSTC — и получении огромных поющих молний с больших установок, в то время как прочие способы для этого непригодны. Силовая часть катушки Тесла включается и выключается несколько сотен раз в секунду, соответственно, плазменный канал молнии то появляется, то исчезает, и нагретый воздух создаёт звуковую волну при его появлении. Но вместо генерирования прямоугольного сигнала для управления транзисторами при помощи таймера 555, как это обычно делают, этот сигнал выдаётся микроконтроллером (или логикой, если не лень её распаивать), а на вход контроллера при этом поступает последовательность нот с определённой частотой, формирующая мелодию. Минусы метода — монофоничность, как у рингтонов старых мобильников (дифоничность в случае парной катушки Тесла) и некоторая сложность при программировании конверсии цифрового сигнала в формате MIDI в набор частот. Скоро будет доделан до законченного вида прерыватель для DRSSTC, который будет способен играть музыку этим способом.

Пример тестового музыкального трансформатора Тесла, который использует этот способ аудиомодуляции, звучит примерно так:

Реализация амплитудной аудиомодуляции катушки Тесла может быть сделана несколькими принципиально различными способами. Известные мне таковы:

1) Модуляция амплитуды напряжения. На вход инвертора — полумоста или моста — подаётся не полное рабочее напряжение, а некий процент от питающего. Реализуется это обычно при помощи т.н. buck-конвертера: топологии преобразователя из ключа (полевого транзистора или IGBT) и диода (или двух ключей для синхронного бака), и сглаживающего дросселя. Ключ управляется по затвору ШИМ-генератором (например, TL494 или аналогичным), через драйвер и опторазвязку. ШИМ-генератор же получает на вход амплитудно модулированный звуковой сигнал с плеера или другого источника звука. Получается этакое двойное преобразование: АМ -> ШИМ -> АМ. Несколько неэффективно и вносит искажение в звучание, но в целом наиболее просто.

2) Модуляция фазы и частоты. Реализуется обычно на основе ФАПЧ (CD4046 и родственников). Получая на вход амплитудный сигнал, мы в соответствии с ним сильнее или слабее мешаем ФАПЧ подстраиваться в рабочую частоту катушки (предельная частота звука — ок. 1/100 несущей частоты катушки) — уходим от резонанса. Этот метод требует использования топологии ФАПЧ при построении катушки, которая несколько сложнее простого автогенератора. Но в общем случае такой способ должен давать более чистый звук.

3) PDM (pulse density modulation), DDS и другие нестандартные методики. Основаны в основном на хитрых аналого-цифровых преобразованиях (пропуск импульсов, например, как в PDM, представляет именно такое преобразование), использовании специальных дорогостоящих микросхем (DDS) и в целом немалого знания искусства схемотехники. Но, по отзывам и записям, они позволяют получить наиболее чистый амплитудно модулированный звук.

Ниже представлена моя амплитудно аудиомодулированная SSTC (Музыкатушка, так я её называю) на полумосте из всё тех же HGTG20N60A4D и с управлением звуком через buck-конвертер и ШИМ. Она сделана более чем топорно и неаккуратно, в основном из-за того, что собиралась несколько месяцев — то не было корпуса, то горели компоненты из-за неправильного включения (я подавал питание на силовую одновременно с драйвером, и, скорее всего, драйвер запускался и работал несколько периодов неправильно, что оказывалось достаточным для выгорания силовой. Проблема решилась установкой реле, включающим силовую часть только после того, как заработает драйвер),

вдобавок ко всему у меня отсутствовали подходящие драйверы (UCC27425), так что пришлось использовать UCC27324 и изобретать во-первых, инверсию сигнала и деление его на два канала, и, во вторых, запуск автогенерации ввиду отсутствия у неё ENABLE-входа. Всё это, впрочем, не мешает Музыкатушке неплохо работать. Это первая моя мощная катушка Тесла, постоянно работающая в CW-режиме (качеры не в счёт). Разряд имеет длину всего лишь около 10-15 см при потреблении в полтора киловатта. Такой режим непрерывной работы сильно разогревает как транзисторы, так и первичную со вторичной обмотки: первоначальный вариант первички и вторички быстро нагревался чуть ли не до сотни градусов и выше, угрожая расплавить каркас; пришлось отказаться от компактности в пользу надёжности и стабильности.

Сейчас частота с тороидом составляет около 250 кГц, при токе по первичной обмотке около 20-25А. 2.

Звук катушки громкий (ватт на 10 по ощущениям), но весьма «грязный», замусоренный холостым шипением. Предположительно, это происходит из-за глючащего от наводок оптрона в баке. Отлаживать не особо хочется, слишком уж долго собиралась эта конструкция в свой более или менее законченный вид.

Разряд необычайно горячий — стальная проволока, будучи поставленной на терминал, горит, как бенгальский огонь, а вольфрам моментально начинает испаряться с голубовато-сизым дымом и бело-жёлтым свечением. Создаваемое катушкой поле так сильно, что можно получить весьма чувствительные ожоги, просто случайно коснувшись какого-то металлического предмета, стоя рядом с ней — возникает дуга между кожей и этим предметом.

Впрочем, фотографии здесь не очень интересны — видеозаписи куда лучше передают её работу.

Последнее видео особо интересно: там фигурирует большая неоновая спираль, недавно мною отпаянная и чрезвычайно красиво ведущая себя в тандеме с Музыкатушкой.

Для дочитавших до этого места подарок: полная схема buck-конвертера. Можно копировать.

Метки отсутствуют.

Ламповая катушка Теслы / Хабр

Хомяки приветствуют вас, друзья.

Сегодняшний пост будет посвящен высокому напряжению. Ламповый трансформатор Тесла является самой тихой конструкцией из всех существующих вариантов. Тут, в качестве генератора высокочастотных колебаний используется мощный пентод ГК-71, благодаря которому можно получать красивые, достаточно длинные разряды в воздухе. В ходе данной работы рассмотрим основные элементы конструкции, узнаем секреты по настройки схемы и визуализируем сигнал с высоковольтной обмотки на экран советского осциллографа. Дальнейшая работа будет заключаться в компактном размещении всех элементов в одном корпусе. В общем всё как вы любите. Простота, надежность и небольшая стоимость делает данную катушку доступной каждому, кто захочет её собрать.

Прелесть ламповой катушки Тесла заключается в том, что одну часть деталей для неё можно достать из обычной микроволновки, а вторую из ближайшего магазина электрики. С пентодом может возникнуть проблема, вещь старая и давно не выпускается, но тот кто ищет — тот всегда найдет. В дальнейшем вы поймете, что его можно заменить на любую другую лампу похожей конструкции.

ГК-71 выбран из-за эстетической красоты и небольшой стоимости. Кто не обратил внимания, анод в этой вакуумированной пробирке полностью состоит из графита, хорошая реализация для рассеивания больших мощностей, по паспортным данным эта цифра составляет 250 Вт. Номинальное анодное напряжение составляет 1.5 киловольта. Максимальная частота 20 МГц.

Данный экземпляр был выпущен в 1981 году. Достался новым прямо из коробки. Непрерывное время работы по документам, составляет 1000 часов. Это примерно 42 дня. В год, на постоянно работающем устройстве, необходимо сменить 8 таких товарищей. По некоторым подсчётам, выпущенных в свое время Ламп ГК-71 хватит еще минимум лет на 200.

Накал — это та часть которая вдыхает жизнь в любую радиолампу. Напряжение для пентода ГК-71 составляет 20 вольт, но ток при этом должен быть не меньше 3. 5 ампер.В общем накал жрет 70 Вт. На рынке за символическую сумму был приобретен отечественный трансформатор ТН54-220-50. При правильном подключении обмоток с него можно получить 85 Вт без каких-либо финансовых затрат.

Следующий элемент — это высоковольтный трансформатор от микроволновки, буржуи называют его МОТ. Напряжение на его выходе составляет 2 киловольта, ток порядка 1 ампера. Довольно мощная и опасная вещь, может отправить вас на встречу к создателю, потому не стоит увлекаться.

Дальше идёт краткий перечень элементов, необходимых для сборки конструкции:

2 масляных конденсатора от той же микроволновки, напряжение 2.1 кВ, емкость 0.95 мкФ. Диодная сборка HYR-1x, её максимально допустимое напряжение 12 кВ, ток 500 мА, по паспорту способен выдержать импульсный ток до 30 ампер. Настоящий зверь в своем роде. Резисторы типа ПЭВ-на 10-20 Вт, можно использовать любые другие аналоги буржуйского производства.

Резонансный высокочастотный конденсатор типа КВИ-3, напряжение может варьироваться от 5 до 20 кВ, для настройки было закуплено несколько таких товарищей с разным номиналом ёмкости на борту. Для намотки индуктора был приобретен многожильный медный провод типа ПВС, сечение 1.5 квадрата. Длина порядка 16 метров. Катушка связи имеет другой цвет и длину 10 метров. Все провода взяты по длине с запасом.

Рубильники коммутирующие силовые части, взяли с допустимым током до 15 ампер, не спрашивайте зачем так много, запас карман не жмёт.

Теперь вторичная высоковольтная обмотка, она же «резонатор». Намотка этой детали требует много времени и терпения. Тут использован медный лакированный провод толщиной 0.2 мм, мотается виток к витку на картонной основе от пищевой пленки. Диаметр трубы 55 мм. Высота намотки получилась 35 см. Витки при этом не должны пересекаться и накладываться друг на друга.

После намоточных процедур результат следует покрыть слоем диэлектрика во избежание пробоя обмотки. Эпоксид наносится в два слоя для надёжности. В результате выйдет глянцевая, переливающаяся на свету труба, которая отнимет часть вашей драгоценной жизни. Второй дубликат катушки был намотан на пластиковой канализационной трубе диаметром 50 мм. ПВХ более надежный диэлектрик, в этом скоро убедимся. Каркас для индуктора был взят из того же картона только большего диаметра, примерно 80 мм.

Для проведения дальнейших работ, необходимо как можно компактней разместить трансформаторы, конденсаторы и прочую ерунду на какой-то крепкой основе. Листы ДСП давно валяются без дела, потому следует разметить их, и пустить в ход электролобзик, работа и звуки которого благородно влияют на жизнь ваших соседей, особенно это актуально по выходным дням.

Конструкция будет двухэтажная. Снизу разместятся трансформаторы с конденсаторами, а сверху разместим Пентод и саму катушку Тесла. Долго думал как скрепить первый этаж со вторым, решил использовать деревянные чепки. Надёжность тут конечно покраснела и пошла выпивать вслед за совестью. Желе какое-то. Надеваем розовые очки и выпиливаем отверстие под радио лампу. Затем с обратной стороны делаем отверстия под провода.

Теперь про индуктор. Сейчас мы точно не знаем сколько нужно витков, мотаем 40, при настройке его всё равно придётся отматывать в меньшую сторону для поиска резонанса. Обмотка обратной связи мотается в одну сторону с индуктором. Количество витков в два раза меньше, то есть 20. Такое соотношение встречается во многих ламповых катушках Тесла.

Момент который не очень понял. В некоторых схемах обмотка связи располагается в нижней части трансформатора Тесла, где развиваются наибольшие токи, а в некоторых сверху над индуктором. Какой вариант расположения лучше мне не известно, но в данной схеме она размещается сверху.

Панельку для установки пентода нам найти не удалось, довольно редкая вещь, потому альтернатива крепления — клеммная колодка для провода с диаметром отверстий 4 мм. Зажимы в ней отлично фиксируют ножки пентода. В качестве декоративной подставки использована фанера, которая была магнитом на двери холодильника.

Теперь время подсоединить провода к накальному трансформатору, и посмотреть всё ли работает. Подаем питание и наблюдаем за показаниями амперметра. 3 ампера, как и паспорт предписывал. По мере прогрева, потребление тока незначительно падает. Камера увы не смогла передать всей красоты раскаленных ниточек внутри этого стеклянного баклажана. Здоровенное лампище… Вот же ж умели делать!

Вся схема устройства довольно простая и выглядит примерно так: переменное высокое напряжение с мота выпрямляется через диод и заряжает конденсаторы от микроволновки, соединены они последовательно для увеличения рабочего напряжения. В этом случае суммарная ёмкость выходит пол микрофарада. Колебательный контур индуктора подключён к аноду лампы через дроссель, состоящий из 10 витков. Все управляющие сетки лампы ГК71 соединены вместе, с этого момента пентод превращается в триод. Схема автогенератора начинает работать при очень малых напряжениях на входе мота. Конденсатор в 2.2 нФ на выходе накального трансформатора служит для фильтрации наводок и высокочастотных выбросов, хотя первое = второе, второе = первое, как-то так. Обращаем внимание на подключение обмоток в первичном контуре. Точка — это нижний вывод обмотки.

В принципе сборка получилась довольно компактной. Её работу запросто можно демонстрировать на уроках физики, вспоминая жизнь того чувака, благодаря которому у нас в розетках переменное напряжение.

Трансформатор Тесла требует хорошего заземления. Батарея не самое лучшее решение для этих дел, но за неимением ничего более подходящего и это сойдет. Контакт должен быть надежным, три метра провода должно хватить, чтобы дотянутся куда угодно в пределах одной комнаты.

В новых домах такой фокус может не пройти из-за металлопластиковых труб в системе отопления. Потому проверяем наличие напряжения между фазой и землей, должно быть 220 вольт. Некоторые пускают заземление через зануление, тоже годный вариант. Между нулем и землей существует потенциал в 3.7 вольта, Креосан недавно рассказывал как можно воровать электричество подобным способом, заряжать телефон и зажигать лампочки, вот только забыл упомянуть тот факт, что современные цифровые счетчики считают потребление энергии как по фазе, так и по нулю. Максимум что вы выиграете, так это визит инспектора к себе в гости.

Итак, включаем питание накальной цепи. Лампа выходит на режим достаточно быстро, секунд 5 хватает для этого дела. Второй рубильник подает питание на мот. Ни в коем случае нельзя подавать высокое напряжение на анод лампы, без включенного накала. Входное напряжения на моте, регулируется с помощью ЛАТР-а, он дает напряжение от нуля до 220 вольт. Незаменимая вещь в работе с подобными схемами. Повышаем напряжение и видим, что генератор заработал. С появлением высокочастотного электрического поля светодиодный светильник закрепленный под полкой начинает немного светится и мигать.

На кончике отвертки, что служит терминалом для выхода молний появился небольшой стример. По мере повышения напряжения размер его растет, но разряды какие-то тонкие и не внушительные. Изменим положение обмотки связи, сместим её чуть вниз. Смотрим что поменялось в работе. Постепенно повышаем напряжение… видим что разряды стали более уверенными, толще, длинней и ярче. Звук довольно внушительный, похож на глухой рёв спортивного автомобиля.

Поиск резонанса осуществлялся либо отматыванием витков, либо подбором резонансного конденсатора. Начал отматывать витки. Увеличение мощности разрядов говорит от том, что мы на правильном пути. Разряды мощней, толще, длинней, самое интересное произошло тогда, когда начал увеличивать емкость резонансного конденсатора. Разряд увеличился, и на глазах начал уменьшатся. Запахло горелой бумагой.

При детальном осмотре выявилось, что картон начал прогорать. А если появился маленький прогар, то он постепенно превращается в большой, так как углерод получившийся в результате сгорания чего-либо становится отличным проводником. В общем это гангрена, которую необходимо немедленно ампутировать. Избавляемся от проблемного участка с помощью ножовки по металлу. Пару минут, проблема решена, а рука подкачана.

Так как резонансный контур изменил свои характеристики путем уменьшения длины вторичной катушки, снова доматываем и отматываем витки первички. Мощность увеличивается. Настроение превосходное, пару секунд радости и конструкция начинает подводить. Вторичку пробивает на первичку. Слишком близко размещены обмотки друг к другу. Предположения были что такое может произойти, но не так быстро. Первый день настройки, и многочасовая работа отправляется на помойку. При желании, эту трубу можно разрезать надвое, и сделать к примеру качер Бровина на транзисторе.

Поначалу хотел изолировать вторичку с помощью пластиковой бутылки, но как показывает практика — этот колхоз ни к чему хорошему не приводит. Одеваем кроссовки и выдвигаемся в ближайший сантехнический магазин за сливной 10-сантиметровой трубой. Такой диаметр уменьшит коэффициент связи обмоток, что есть хорошо в данной конструкции. Диэлектрические способности у такого цилиндра куда лучше чем у обычного картона.

Поверх трубы намотаем слой бумаги, на нее укладываем витки индуктора и обмотки связи. Бумага позволяет спокойно передвигать обмотки по всей длине трубы. Устанавливать катушки удобно на заглушки, они родом из того же магазина сантехники и позволяют соблюдать центровку всего резонансного контура. Немного усилий и конструкция снова готова к работе. Повторяем процедуру включения. В начале подаем питание на накал, ждём пару секунд, а затем включаем анодное напряжение. Оно сейчас в нуле и регулируется лабораторным автотрансформатором. Включаем его и постепенно поднимаем напряжение.

Разряды с увеличением коэффициента связи стали больше и красивей. На этом моменте наверное стоило завершить пост, схема заработала, разряд мы увидели. Но по традициям на этом, всё только начинается.

Для окончательной и более правильной работы, автогенератор необходимо настроить на осциллографе. Настраивать систему будем по максимальной амплитуде сигнала. Щуп осциллографа подключать напрямую к схеме не будем, для настройки разместим его на уровне тора и будем смотреть эфирный сигнал. Вся наводка, форма, частота и амплитуда сигнала отобразится на экране осциллографа. В данной схеме, этой информации для настройки будет более чем достаточно. Включаем накал. Подаем анодное напряжение. Регулируем напряжение автотрансформатором… но почему-то ничего не происходит… разбираемся что не так!? Ага, забыли подключить заземление, бывает, прикручиваем его на свое место и повторяем процедуру включения. Крутим ручку и сигнал оживает. Это наш индикатор в мире настройки. Входное напряжение на моте всего 50 вольт, отлично, нам сейчас разряды в воздухе не нужны.

Альтернативой обнаружения высокочастотных полей может служить обыкновенная неоновая лампочка. Амплитуду сигнала ею определить не выйдет, но зато можно судить о работоспособности устройства в целом, правильной или нет — это уже другое дело.

Итак, в процессе настройки удалось выделить два интересных режима работы. Первый это плавно затухающий импульс с небольшой амплитудой в отличии от второго режима. Сейчас мы перекидываем провода на разные витки индуктора и наблюдаем как меняется сигнал. Внимание вопрос знатокам. Какой режим автогенератора дает наибольшие разряды: вариант «а»- с плавно затухающим сигналом, но малой амплитудой, или вариант «б»- с большой амплитудой, но коротким импульсом?

Настройка резонанса с помощью конденсаторов. У этих образцов разная емкость, как выбрать нужную? Всё просто, поочередно соединяем конденсаторы параллельно индуктору и смотрим на сигнал. Нужно быть при этом осторожным, тут развиваются большие токи, которые могут нанести фаталити вашей руке. Дохлые электронщики никому не нужны. Если емкость будет слишком большая, она попросту погасит всю амплитуду сигнала.

В начале выпуска я обещал рассказать зачем нужны такие массивные контакты на конденсаторах. Во время работы, особенно на резонансе, в индукторе развиваются огромные токи, порядка нескольких сотен ампер, если такой ток пойдет через тонкие ножки обычного конденсатора, они попросту перегорят как перемычка в предохранителе. В данной схеме хорошо прижился конденсатор КВИ3 на 1500 пФ 10 кВ. Год выпуска 1978, раритет в своем роде, старше меня лет на 10.

Схема автогенератора работает в принудительном режиме прерывания с частотой сети 50 Гц, если растянуть во времени затухающие колебания, можно высчитать частоту работы автогенератора. Синхронизируем эту старую рухлядь и приступаем к расчетам.

Сейчас, переключатель времени деления на осциллографе стоит в положении 0.5 мкс. Это означает, что одна клетка на шкале экрана равна 0.5 мкс. Один период синусоиды занимает 5 клеток, следовательно 5 умножаем на 0.5 равно 2.5 мкс. Частота находится по формуле: 1 деленная на период. Считаем. 1/2.5 мкс равняется 0.4 мГц, что равняется 400 кГц. Отсюда вывод, резонансная частота настроенной катушки Тесла, ровняется 400 кГц.

Расчеты могли быть более точными при наличии современного оборудования, но для данной схемы оно попросту не нужно. После настройки регулируем положения индуктора и обмотки связи так, чтобы амплитуда сигнала на осциллографе была максимальной. На этом этапе настройку ламповой катушки тесла, можно считай исчерпывающей. Потребление силовой части схемы без цепи накала, составляет 720 Вт.

В работе ламп есть что- то удивительное, когда берешь их в руки, возвращаешься в те далекие теплые времена. Транзисторы и прочая современная электроника со временем приедается, становится скучной. На лампу можно смотреть вечно, ну или 1000 часов пока не пропадет электронная эмиссия и катод не обеднеет. Теперь время посмотреть как это всё работает.

В процессе работы схемы, лампа не перегревается и может работать продолжительное время, скажем 10 минут без перерыва. Но находятся умельцы, которые ставят на выходе мота много-количественные сборки из микроволновочных конденсаторов, мощь схемы увеличивается, лампа начинает работать на пределе своих возможностей. Естественно графитовый анод лампы нагревается до красна, катод расходует свой ресурс. Такой режим работать будет, но не долго.

Для увеличения срока службы лампы на больших мощностях используют прерыватели. Это грубо говоря переключатель, который на короткое время запускает генератор на Тесле. Секунда работы, секунда отдыха, как-то так. Режимы естественно можно менять.

Свечение различных лампочек в высокочастотных электрических полях это вообще отдельная тема, некоторые образцы настолько красивы, что претендуют на отдельный пост.

Слыхали про то, что различными солями можно подкрашивать цвет огня, сейчас проверим это на практике. Для этого берем обыкновенную поваренную соль и разбавляем ее небольшим количеством воды. Получившуюся кашу наносим на электрод. Ионы натрия должны подкрасить молнию в оранжевый цвет, это сейчас и посмотрим.

Данная конструкция проста в повторении, и элементарна в настройке. В ней нет дорогих деталей, хотя цена — дело относительное, стоимость всех элементов составляет примерно 65 баксов не включая ЛАТР для регулировки входного напряжения в анодной цепи.

В одном из следующих постов мы рассмотрим полупроводниковую систему, там узнаем как рассчитывается резонанс, как управлять железом и прочую малоизвестную нормальному человеку ерунду.

Для справки. Съемка сегодняшнего выпуска вместе с пост обработкой, написанием текста и прочими процессами заняла 2 месяца. Это можно назвать быстрым выпуском. В комментариях вы часто пишете чтобы мы снимали материал в сфере физики и электроники, сейчас так и происходит, но тут есть обратная сторона медали, время. Теперь выпуски будут выходить реже чем обычно, надеюсь вы всё понимаете.

Как гласит народная мудрость: работа и труд — всё перетрут.


Полное видео проекта на YouTube
Наш Instagram

Миниатюрная и простая катушка Тесла своими руками

Здравствуйте, уважаемые читатели и самоделкины!
Наверняка почти каждый из Вас много раз слышал про знаменитую катушку Тесла, но никак не доходили руки до ее сборки. Возможно многие считают, что это весьма сложное устройство.
В данной статье, автор YouTube канала «KJDOT» расскажет Вам, как изготовить это устройство в миниатюре.

Эта самоделка очень проста в изготовлении, и с ней справится даже школьник.

Материалы.
— Медные провода 0,25 и 1,2 мм диаметром
— Транзистор 2N2222A
— Резистор 22КОм
— Батарейка 9 В (крона)
— Разъем для батареи
— Припой
— Полиэтиленовая трубка, кусочек фанеры
— Изоляционная лента
— Наждачная бумага.

Инструменты, использованные автором.
— Клеевой пистолет
— Паяльник
— Ножовка, кусачки, ножницы.

Процесс изготовления.
Итак, автор предлагает для начала ознакомиться со схемой устройства.

В качестве корпуса катушки автор будет использовать полиэтиленовую трубку, также подойдет и ПВХ труба. Ее внешний диаметр должен быть около 20 мм. На одном краю трубки он зафиксировал изоляционной лентой край эмалированного провода диаметром 0,25 мм, и начал намотку. Это будет вторичная, высоковольтная обмотка.

Всего потребуется сделать 200 витков, важно укладывать их плотно друг к другу, не допуская перехлестов и пропусков. Также недопустимы разрывы. Последние витки также фиксируются изоляционной лентой.

Излишек длины трубки автор обрезает ножовкой.

Для изготовления первичной обмотки нужен провод диаметром 1,2 мм. Его края зачищаются наждачной бумагой, или ножом. Количество витков обмотки — четыре.

Итак, катушка приклеивается к небольшой дощечке при помощи горячего клея.

Затем на катушку надевается первичная обмотка, и фиксируется в ее нижней части. Также к основанию приклеивается транзистор.

Коллектор транзистора припаивается к одному из выводов первичной обмотки.

К базе транзистора припаивается один вывод высоковольтной обмотки. Второй останется свободным.

Ножки резистора укорачиваются, и он припаивается между базой транзистора, и вторым выводом первичной обмотки.

Теперь остается припаять отрицательный провод питания к коллектору, а положительный — ко второму выводу первичной обмотки. Все места пайки желательно тщательно заизолировать. Горячий клей вполне справится с этой задачей.

Можно подключать батарейку к клеммам, и начинать испытания. Люминесцентная лампа засветилась. Также светится и светодиод, припаянный к небольшой катушке.

А вот так это выглядит в темноте.

Благодарю автора за простую, и легкую для повторения схему катушки Тесла!
Повторите и Вы это простое устройство! Будьте внимательны, Вы имеете дело с высокими напряжениями!
Всем хорошего настроения, удачи, и интересных идей!

Авторское видео можно найти здесь.

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Однотактная SSTC катушка Тесла

Приветствую, уважаемые радиолюбители-самоделкины, а также все любители высоковольтных конструкций!

На картинке выше показан высоковольтный коронный разряд, который создаёт катушка Теслы, схема которой будет представлена в этой статье. Думаю, каждый захочет заиметь себе такую домой, ведь это зрелище по-истине восхитительно и уникально. Катушка Тесла, оформленная в красивый корпус будет прекрасно дополнять интерьер комнаты, даже будучи выключенной. Людям, далёким от электроники такие высоковольтные разряды, созданные в домашних условиях, кажутся настоящей магией, поэтому, собрав такое устройство, может будет запросто удивить друзей 🙂

В природе коронные разряды могут создавать во время грозы, например, на высоких сооружениях либо мачтах кораблей. Также коронные разряды можно увидеть на высоковольтных линиях электропередач, особенно в мокрую погоду. Там такие явления — не редкость, ведь строители ЛЭП даже предпринимают специальные меры, чтобы не возникало лишних коронных разрядов, ведь они могут отнимать довольно значительную часть электроэнергии, передающуюся через ЛЭП. Существуют различные виды катушек Тесла. Самые первые из них — ламповые, были созданы ещё тогда, когда у человечества не было полупроводниковых приборов, транзисторов. Ламповые катушки и по сей день пользуются популярностью у любителей, ведь они обладают наибольшей аутентичностью, но довольно капризны и работе и сложны в постройке. С появлением мощных транзисторов люди научились строить так называемые «SSTC» катушки, в которых мощные лампы заменены полупроводниками. Катушки SSTC могут быть как двухтактными (полумостовые, полномостовые), так и однотактными. В этой статье будет рассмотрена схема однотактной катушки, она наиболее проста в сборке, требует наличия всего одного мощного транзистора (но лучше накупить их побольше, без спалённых транзисторов при настройке не обойтись :). Но вместе с тем обеспечивает достаточно мощные разряды, длиной до 10 см. В их красоте вы можете убедится, лично собрав схему, представленную ниже.

Данная схема является, по сути, генератором прямоугольных импульсов. Они поступают на затвор единственного в схеме полевого транзистора, который коммутирует уже непосредственно первичную катушку. На схеме можно увидеть две микросхемы — NE555 и UC3845. На первой собран генератор для прерываний. Здесь стоит пояснить, что катушка Тесла может работать в двух режимах, непрерывном, когда на затвор силового транзистора импульсы поступают непрерывно, либо в режиме с прерываниями. В этом случае на затор импульсы приходят не постоянно, а пачками по несколько импульсов. Вот эти вот «пачки» формирует микросхема NE555. Два подстроечных резистора в её обвязке отвечают за частоту и скважность (ширину) импульсов. А вот вторая микросхема, UC3845, формирует уже непосредственно высокочастотные импульсы, которые «раскачивают» вторичную обмотку за счёт явления резонанса. Частота генерации микросхемы UC3845 настраивается подстроечным резисторов в её обвязке. После сборки схемы вращением этого подстроечника нужно добиться резонанса между частотой генерации схемы и собственной частотой колебаний вторичной обмотки. Эта частота зависит от конструкции вторичной обмотки, её длины и ширины, а также от наличия или отсутствия тора — массивного металлического шара наверху конструкции. Логическая часть схемы питается от напряжения 12В, а вот силовая цепь с первичной катушкой и транзистором требует более высокого напряжения, 50-150В. Чем больше будет напряжение, тем сильней и красочней будут разряды, но тем сильней будет и нагрузка на транзистор, поэтому для каждого случая нужно найти своё оптимальное напряжение питания, при котором транзистор будет умеренно нагреваться. Для охлаждения транзистор обязательно нужно поместить на большой радиатор с использованием теплопроводной пасты. Идеальным вариантом для данной схемы будет IRFP460, он достаточно мощный при небольшой стоимости. Также для данной схемы чуть хуже, но подойдёт распространённый и дешёвый IRF840.

Схема выполняется на печатной плате, файл которой для открытия в программе Sprint Layout прилагается в конце статьи. Потенциометры выводятся с платы на проводах, но при необходимости можно и установить подстроечные резисторы на плату, в этом случае с платы не будут торчать лишние провода. Обратите внимание, что провода до переменных резисторов не должны быть слишком длинными, ведь при работе катушка Тесла излучает сильные электромагнитные поля, которые могут улавливать длинными проводами и мешать работе схемы. Плату можно выполнить как методом ЛУТ, так и методом фоторезиста. Автор избрал второй метод, фотографии процесса создания платы представлены ниже.

Готовую плату нужно залудить, чтобы медь не окислялась и плата не теряла привлекательный вид. Силовые дорожки, в цепи коллектора и эмиттера нужно пролудить особенно тщательно для минимизации потерь, ведь по ним будут протекать большие токи. На картинке ниже показан внешний вид собранной платы.

Несколько слов о конструкции самой катушки. Как известно, катушка Теслы содержит две обмотки — первичную, с небольшим количеством витков толстого медного провода, и вторичную, намотанную большим количеством витков тонкого медного провода. Для первичной катушки желательно брать провод сечением от 4 кв. мм, слишком тонкий провод не позволит развить максимально возможной мощности. Вместо провода в изоляции можно использовать, например, медную шину или трубку, главное, чтобы витки не соприкасались друг с другом. Количество витком должно быть равно 5 или 6. Вторичная катушка гораздо интереснее, ведь чем большее в ней будет количество витков, тем больших длин разрядов можно будет достичь. Идеально использовать для намотки вторички ПВХ канализационных трубы, например, диаметром 5 или 10 см. При этом между диаметром и высотой должны сохраняться адекватные пропорции, например, нельзя брать слишком тонкую трубку в качестве каркаса и делать на неё длинную намотку. Чем больше диаметр катушки, тем болей должны быть и её высота. Оптимальное количество витков лежит в пределах 800-1500. Можно использовать медную проволоку от 0,1 до 0,4 мм диаметром. Например, неплохо подойдёт проволока из катушек отклоняющей системы кинескопа старых телевизоров. Желательно сразу рассчитать длину проволоки, которая понадобится для намотки катушки, ведь соединения проволоки на вторичной катушки не только будут выглядеть неэстетично, но и могут спровоцировать лишние пробои. Располагать первичную обмотку нужно поверх вторичной, поэтому они должны быть разными в диаметре. Расстояние, или зазор между первичкой и вторичкой, а также их взаимное расположение подбирает индивидуально в каждом случае, по достижению наиболее длинных и мощных разрядов.

Несколько слов о настройке и первом включении катушки. Для начала схему нужно запустить без подключения первичной катушки к транзисторы, нужно проверить работу логической части. С помощью осциллографа проверить, поступают ли импульсы на затвор транзистора, а также регулируется ли частота и скважность потенциометрами на схеме. Если всё работает, можно подключать первичную и вторичную обмотки, подавать питание на силовую часть. При первом включении желательно использовать небольшое напряжение, не более 50В, чтобы проверить, работает ли конструкция. Если на верху вторичной обмотки появился небольшой пушистый разряд, можно увеличивать напряжение, контролируя нагрев транзистора. Если нет, то нужно поменять конца первичной обмотки и попробовать снова. Если всё собрано правильно, конструкция обязательно запустится. Между прочим, коронный разряд вполне реально потрогать пальцами, он будет слегка пощипывать, но не причинит вреда. Но не стоит держать палец слишком долго, иначе возможно получение ожога.

Силовая часть потребляет довольно значительный ток, а потому для её питания нужен качественный источник. Например, подойдёт трансформатор на напряжение 50-100В, напряжение с которого выпрямлено диодным мостом и сглажено конденсаторами. Не стоит использовать для питания ЛАТР, он хоть и позволяет удобно регулировать напряжение на выходе, но не имеет гальванической развязки с сетью 220В, а потому при его использовании коронный разряд катушки Теслы может быть смертельно опасен. Удачной сборки!

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Трансформатор Тесла: принцип работы и схема

Тесла-трансформатор представляет собой высоковольтный резонансный прибор, работающий на высокой частоте. Конструкция агрегата относительно простая. Подобные приборы демонстрируют разряды электричества, красиво смотрящиеся в темноте. Трансформаторы типа Тесла испускают настоящие молнии. Поэтому его использование сводится к декоративным функциям. Особенности чудо-прибора интересно узнать каждому.

История изобретения

Резонансный трансформатор Тесла появился в результате многолетней работы ученого и экспериментатора Н. Тесла. Он стремился найти способ передавать электричество на большие расстояния без проводов. В 1891 году изобретатель продемонстрировал наглядные эксперименты, проводимые в этом направлении.

Практическое применение его трудов (по мнению самого ученого) заключалось в обеспечении светом любого здания, частного дома и прочих объектов посредством тока высокого напряжения и частоты. Ученый раскрывал особенности получения, применения подобных токов, применения их для электроснабжения.

Постепенно ученый начал задумываться об использовании открытого способа для передачи электричества на большие расстояния. На разработку теории исследователь потратил несколько лет. Ученый проводил множество экспериментов, совершал каждый элемент схемы. Экспериментатор трудился над созданием прерывателей, контроллеров цепей, стойких конденсаторов высокого вольтажа. Замысел исследователь в жизнь так и не воплотил в том масштабе, в каком было изначально задумано.

Однако каждый его патент, статья, лекция были сохранены. Их можно сегодня перечитать, обдумать. Например, патент № 649621 и №787412 представлен в интернете. Документы размещены в открытом доступе для широкой общественности. Видео работы агрегата в действии легко отыскать в сети.

Основной принцип, открытый великим изобретателем, ныне применяется для изготовления люминесцентных осветителей.

Схема и основные компоненты

Чтобы понять, как работает трансформатор Тесла, необходимо рассмотреть его устройство. В схему входит две обмотки – вторичная и первичная. Контуры выполнены из медной проволоки толщиной 0,1-0,2 мм².

К первичной обмотке подводится переменный ток. Это позволяет получить магнитное поле, передающее электричество от первой ко второй катушке. В этот момент вторичная обмотка будет производить контур колебательного типа. Обмотка будет накапливать получаемое электричество. Некоторое время нагрузка будет здесь храниться как определенное напряжение.

Схема резонансного трансформатора Тесла может иметь разное строение катушек. Контуры обладают схожими чертами. Тороидальные разновидности катушек Тесла представлены на фото.

Трансформатор конструкции Николы Тесла содержит в составе тороид. Элемент выполняет три основные функции:

  1. Способствует накоплению электричества перед тем, как будет получен стример. Большие габариты позволяют тороиду вместить значительное количество энергии. В устройстве часто применяется прерыватель.
  2. Уменьшает резонансную частоту.
  3. Образует электростатическое поле, отталкивающее стример. В некоторых типах конструкций эту функцию выполняет вторичная катушка.

Для подобных устройств важно выдерживать правильное соотношение между диаметром и длиной вторичной катушки. Пропорция должна составлять 1:4. Защитное кольцо схемы препятствует выходу электроники из строя. Деталь выглядит как специальное кольцо, изготовленное из меди.

Для правильной работы трансформатора Тесла защитное кольцо должно заземляться. Стримеры замыкают ток, ударяясь в землю. Если контур надежен, молнии ударяют непосредственно в агрегат.

В первичной обмотке определяется небольшое сопротивление. Это обеспечивает на практике надежную передачу электроэнергии. Точка подключения характеризуется высокой подвижностью. Это позволяет менять резонансную частоту. Понимая соотношение представленных элементов, удастся вникнуть в принцип работы трансформатора Тесла.

Принцип работы

Емкостной трансформатор Тесла характеризуется определенным принципом работы. Он заряжает конденсатор при помощи дросселя. Чем меньше уровень индуктивности, тем быстрее будет происходить зарядка. Спустя некоторое время его показатели напряжения значительно увеличиваются. В разряднике появится дуга. Она станет хорошим проводником.

Емкостным аппаратам требуется обеспечивать заряд аккумулятора от аккумулятора высокого напряжения. Обычные батарейки для этого не подходят. Питание первичной цепи выполняется различными способами. Это может быть статический искровой промежуток с подключением к высоковольтному прибору от микроволнового нагревателя. Также для этих целей применяются схемы из транзисторов на программируемых контроллерах.

Работающий аппарат при сочетании катушки и конденсатора характеризуется хорошим контуром. За счет образовавшейся нагрузки возникают колебания. В этот момент в конденсаторе и катушке произойдет энергообмен. Ее первая часть исчезнет в виде тепловых лучей. Вторая часть электричества проявится в разряднике. Индуктивность будет способствовать образованию еще одного контура. Частота всех компонентов должна быть одинаковой.

Первый контур передает свою нагрузку. Амплитуда колебаний будет равняться нулю. Обменом энергии этот процесс не заканчивается. После исчезновения дуги остаточная энергия может быть заперта. Весь процесс может повторяться. При сильной связи скорость обмена энергией будет высокой.

Некоторые поклонники творческих идей великого изобретателя утверждают, что КПД емкостного трансформатора Тесла составляет более 100%. Однако это не так. Коэффициент полезного действия, которым характеризуется данное устройство, подчиняется законам сохранения энергии. Поэтому такое утверждение не имеет под собой никаких оснований.

Применение

Помимо декоративного применения представленного устройства существует и практическая польза от его эксплуатации. Коронный разряд заряжает воздух озоном. Это освежает атмосферу в помещении. При этом не стоит допускать длительное воздействие прибора. Большое содержание озона приводит к плохому самочувствию.

Также применение представленного устройства позволяет реанимировать работу вышедшей из строя люминесцентной лампы. Если приблизить прибор к осветительному прибору, последний снова будет функционировать. Однако не стоит подносить близко к излучателю мобильные устройства. Это может вывести гаджет из строя.

Это уникальное, до конца не изведанное изобретение. Его применение должно выполняться с осторожностью. Простота конструкции позволяет собрать прибор самостоятельно.

Цепи питания

:: Next.gr

— Стр. 3

  • Это сложный компонент, мягко говоря. Это как если бы он состоял из 3 заглавных букв, составляющих 2 виртуальных плюс сама известная заглавная буква. На моем первом графике я показываю журнал выполнения работающей и успешной версии, показанный в моих видео на YouTube. Напряжение ….

  • Это (при работе через искровой разрядник) всегда четверть волны, или полуволны, или кратные целой волне, так что достигается 2 * n максимумов.Может кто-нибудь указать на источники, связанные с созданием стоячих волн и резонанса ….

  • Для питания нагрузки в схеме используются шесть свинцово-кислотных аккумуляторов на 12 Вольт. 3 батареи подключены последовательно для создания 36 вольт. Полный ток разряда 30 Ампер. 3 батареи подключены параллельно, чтобы создать 12 вольт. Общий ток заряда составляет 10….

  • Если общее сопротивление цепи может быть значительно уменьшено до менее 0,1 Ом и подключена нагрузка 0,4 Ом или меньше, можно получить более 1 киловатта свободной электрической энергии. Имеются две дискретные ступени регулирования напряжения, один показан на ….

  • Южноафриканская компания, разработавшая безтопливный генератор мощностью 5 киловатт, обнаружила, что этот процесс в значительной степени влияет на долговечность батарей.Что касается выбора батарей для тестирования, то есть много разных свинцов ….

  • Коллекторы лучистой энергии

    Тесла и способы их создания. Я сам работал над некоторыми конструкциями лучистой энергии, пробуя стандартный выпрямительный мост для антенны и земли, используя выпрямитель с учетверенным напряжением Greinacher….

  • Четыре никель-кадмиевых аккумулятора 4,8 В 2000 мА. Кто-нибудь знает безопасный способ первоначальной зарядки этих батарей от лабораторного источника питания. У меня нет никель-кадмиевого зарядного устройства, поэтому мне нужно его сделать. Любые принципиальные схемы простого NiCad зарядного устройства буду рад ….

  • Эту схему также должно быть проще всего настроить (причина: когда импульс составляет 6 В, все транзисторы должны быть открыты, поэтому, по логике, короткого замыкания аккумулятора не должно быть).Источник импульсного напряжения V5 можно заменить нестабильной схемой 555. V6 может быть ….

  • ..

  • Симпатичная и компактная установка, которая работает в автономном режиме, напрямую от 220 В, с только удвоителем напряжения, чтобы довести напряжение пластины до 560 В постоянного тока.Мне не нужно вдаваться в подробности объяснения этой схемы, это простой генератор Армстронга, использующий катушку обратной связи L4 …..

  • Катушке было добавлено несколько дополнительных витков, поэтому мне пришлось найти способ улучшить изоляцию. Я выбрал эпоксидную смолу с добавлением некоторого дополнительного количества поверх пайки: ..

  • Катушки Тесла с вакуумной трубкой работают в режиме непрерывной волны, непрерывно обеспечивая энергией вторичную обмотку катушки Тесла.В результате выходная мощность в первую очередь определяется тем, сколько мощности может обработать вакуумная лампа. Искровой разряд и ….

  • Катушка работает от 12 В или 24 В батарей SLA. Пара автомобильных катушек зажигания используется для обеспечения около 20 кВ для зарядки конденсаторной батареи. Катушки зажигания возбуждаются прямоугольной волной переменной частоты от микросхемы синхронизации 555 и четырех больших….

  • Самодельный тюнер с катушкой Тесла. Как сделать тюнер с катушкой Тесла из легко доступных деталей. Найдите резонансную частоту деталей катушки Тесла ….

  • Как сделать катушку Тесла SRSG мощностью 1 кВт.SRSG с питанием от сети (синхронный вращающийся искровой разрядник) Катушка Тесла питается от 1 кВА (10 мА 10 кВ) NST ….

  • История катушек Николы Тесла и Тесла, принцип работы катушки Тесла и пример самодельного ТК. Самодельная самодельная катушка Тесла работает от батареи и имеет терминал газоплазменного разряда. Дуги могут быть похожи на двойную спираль.Конденсаторы высоковольтные, ….

  • Проект Thor был начат в Институте высокого напряжения HUT (Технологический университет Хельсинки) в январе 1999 года. Д-р Марти Аро отвечает за надзор за проектом, а Марко Дениколай — за разработку и реализацию проекта. В рамках этого проекта а….

  • Обратный трансформатор телевизора может работать как маломощная катушка Тесла. Схема Тесла состоит из генератора импульсов, схемы драйвера и высоковольтного трансформатора. Резисторы R1 и R2 определяют время, в течение которого выход на выводе 3 отключен, в то время как R3 и R4 ….

  • ..

  • Вот вторичная обмотка Тесла, которую можно попробовать: намотайте 750 витков эмалированного магнитного провода 24-го калибра на 18-й кусок трубы из ПВХ с внешним диаметром 1,9 мм. Большая катушка имеет индуктивность около 2800 мГн с собственной емкостью около 20 пФ. Один конец катушки должен ….

  • Схема состоит из нескольких катушек, повышающего силового трансформатора и конденсатора.Электропитание от настенной розетки переменного тока подается на трансформатор T1 (небольшой трансформатор с неоновой вывеской), который повышает напряжение до 3000 вольт переменного тока. Повышенная ….

  • В большинстве катушек Тесла, разработанных для образовательных и экспериментальных целей, используются схемы с повышающим трансформатором, работающие от сети, подобные тем, что показаны на рис.1 — для создания высокого напряжения, необходимого для первичной цепи катушки. Хотя технически ничего плохого в ….

    нет.

  • Tesla построила самый мощный в мире радиопередатчик. Вокруг основания 200-футовой мачты он поместил трансформатор с воздушным сердечником диаметром 75 футов. Первичная обмотка состояла всего из нескольких витков провода; вторичный был 10 футов в диаметре….

  • В этой области показаны конструкции и испытания новой полуволновой (двойной) катушки Тесла. Катушка этого типа имеет две вторичные обмотки, приводимые в действие одним контуром резервуара. Показанная здесь конструкция представляет собой небольшую и довольно неэффективную двойную катушку, созданную из лома для ….

  • В этой области показаны конструкции и испытания катушки Тесла среднего и большого класса.В этом разделе предыдущие катушки были разобраны, а новая большая катушка с вторичной обмоткой более 6 дюймов была переработана и сконструирована для обеспечения максимальной эффективности при мощности …

  • Каждая дешевая энергосберегающая лампа имеет внутри саморезонансный инвертор напряжения. Они предназначены для работы с низким энергопотреблением до нескольких ватт.Почему бы не масштабировать все это и заменить резонансный контур для генерации необходимого напряжения лампы на …

  • ..

  • Цель состоит в том, чтобы повторить демонстрацию, показывающую, что энергия электрического поля, создаваемая хорошо спроектированным передатчиком с катушкой Тесла, может быть обнаружена чувствительным, хорошо настроенным приемником с катушкой Тесла, размещенным на расстоянии, превышающем несколько длин волн.Настоящее ….

  • Большинство людей считают, что катушки Тесла с искровым разрядником могут работать только от высоких напряжений — обычно 4-15 кВ или более. Но некоторые необычные эксперименты можно провести с напряжением всего 240 В — напрямую. За исключением очень низкочастотных блинных катушек, практических возможностей мало ….

  • Эта веб-страница предназначена для оказания помощи и информации всем, кто хочет построить катушку Тесла.Я рекомендую вам воспользоваться другими ресурсами, которые мы предлагаем на этой странице. Я живу в США, а в этой стране линия электропередач ….

  • ..

  • Инверторная схема для питания EL-подсветки и люминесцентных ламп, так что выходная мощность составляет около 127 В переменного тока, как он утверждал.Но я хочу, чтобы 1 кВ или более производили пурпурную плазму толщиной не менее 1 мм, которую обычно производит катушка Тесла! (30 кВ требуется для получения плазмы длиной 1 см). Поэтому я ….

Как сделать мини-катушку Тесла 9v

Будь то обычный школьный проект или умопомрачительный проект по разряду дуги, Tesla Coil всегда интересно строить и определенно сделает ваш проект крутым и привлекательным.Катушка Тесла — это простая катушка, которая создает в воздухе электрическое поле высокого напряжения при небольшой входной мощности (9 В), это электрическое поле достаточно сильное, чтобы зажечь маленькие лампочки. Этот принцип был изобретен Никола Тесла , который также является автором изобретения индукционных двигателей, переменного тока, неоновых ламп, пультов дистанционного управления и т. Д.

Эта миниатюрная схема катушки Тесла очень проста и работает только с помощью батареи 9 В и очень немногих общедоступных электронных компонентов, что делает ее очень простой в сборке (скрещенные пальцы).Есть горстка людей, которые уже попробовали этот проект и не смогли получить результат; это в основном из-за небольшого количества часто встречающихся мелких ошибок. Так что не имеет значения, отказались ли вы от катушек Тесла или если вы новичок в этой теме, этот учебник станет вашей последней остановкой для создания и отладки катушки Тесла и ее работы. В этом уроке DIY мы узнаем , как сделать простую катушку Тесла с батареей 9 В и передавать энергию по беспроводной сети.

Предупреждение: Это проект высокого напряжения, поэтому убедитесь, что вы всегда знаете, что делаете. Напряжение не смертельно, но все же может вызвать повреждение нервов и тканей при прямом контакте с какой-либо дугой. Вам не нужно сильно бояться, но всегда помните, что нельзя касаться катушки, когда она включена.

Необходимые материалы:

  1. Магнитный провод, также известный как эмалированный медный провод
  2. Резистор 22 кОм
  3. 2N2222 Транзистор
  4. светодиод
  5. Обычный провод для макета
  6. Любой непроводящий цилиндрический предмет
  7. Батарея 9 В (или питание 5 В)
  8. Макетная плата

Работа катушки Тесла:

Прежде чем мы начнем создавать катушку Тесла, очень важно знать, как она работает.Только тогда мы сможем успешно построить и отладить его. Катушка Тесла работает по принципу электромагнитной индукции . Согласно этому закону, когда проводник находится под изменяющимся магнитным полем, внутри проводника индуцируется небольшой ток. Для катушки Тесла этот проводник будет называться вторичной катушкой , а изменяющееся магнитное поле будет создаваться первичной катушкой путем пропускания колеблющегося тока через первичную катушку.

Это может показаться немного запутанным, но давайте продолжим с принципиальной схемой, где все будет ясно.

Принципиальная схема:

Принципиальная схема Mini Tesla Coil Project , приведенная ниже, очень проста. Итак, давайте разберемся, как это работает, и научимся его создавать. Основным компонентом этой схемы является вторичная катушка (золотистого цвета), которая создается путем наматывания магнитного провода (эмалированный) вокруг цилиндрического объекта (подойдет любой непроводящий объект).

Сильноточный высокочастотный транзистор , такой как 2N2222 , используется для подачи тока через первичную обмотку (фиолетовый цвет). Вся установка питается от батареи 9V , как показано выше. Положительный конец батареи достигает коллектора транзистора через первичную обмотку, и эмиттер заземляется. Это означает, что всякий раз, когда транзистор проводит, ток проходит через первичную катушку. Светодиодный диод и один конец вторичной катушки также соединены с базой транзистора, чтобы заставить схему колебаться, таким образом, транзистор будет посылать колебательный ток в первичную катушку.Если вы хотите получить более подробную техническую информацию и узнать, как колеблется ток, вы можете поискать в Google Slayer Exciter Circuit .

Итак, при таком расположении у нас есть первичная катушка, которая будет иметь колебательный ток и, следовательно, будет создавать вокруг нее переносящий магнитный поток. Теперь эта катушка намотана вокруг вторичной катушки, и, следовательно, согласно закону электромагнитной индукции во вторичной катушке будет индуцироваться напряжение. Поскольку количество витков во вторичной катушке намного больше, чем в первичной катушке, это напряжение будет очень высоким, и, следовательно, эта катушка будет иметь очень сильный электрический поток вокруг себя, который достаточно мощный, чтобы накалить обычные лампы CFL и используется в Беспроводная передача энергии .

Обмотка вторичной катушки:

Одним из очень важных шагов в этом проекте является намотка вторичной обмотки. Это трудоемкий процесс, поэтому не торопитесь с этой частью. Прежде всего, вам понадобится магнитная катушка, которую еще называют эмалированным проводом катушки. Эти провода можно найти внутри катушек реле, трансформаторов и даже двигателей. Вы можете использовать один повторно или купить себе новый. Чем тоньше проволока, тем лучше будут результаты.

Когда вы будете готовы с магнитным проводом, вам понадобится цилиндрический объект . Единственное правило при выборе этого объекта — он не должен быть токопроводящим. можно выбрать трубы ПВХ, картонный рулон или даже сложить вместе 4-5 листов А4 и свернуть их. Диаметр цилиндра может составлять от 5 см до 10 см, а длина должна быть не менее 10 см. Чем длиннее объект, тем большее количество поворотов он может уместить.

После того, как вы достали катушку и цилиндрический объект, пора начать процесс намотки, просто намотайте несколько витков и используйте ленту, чтобы сначала закрепить обмотку, а затем приступайте к полной намотке.Обязательно следуйте приведенным ниже советам при намотке

.

  1. Намотайте катушки как можно ближе
  2. Не перекрывайте один виток катушки другой
  3. Постарайтесь сделать минимум 150 витков, обычно достаточно 300 витков.

Распространенные заблуждения:

Когда мы будем готовы с катушкой, мы почти на 90% проработаем проект, после этого просто следуйте принципиальной схеме и выполняйте подключения, но есть несколько часто задаваемых вопросов, на которые вы можете найти ответы ниже.

  1. Не используйте обычный транзистор вместо 2N2222, если вы не знаете, как выбрать точный эквивалент для этого транзистора.
  2. Резистор 22 кОм не обязательно должен быть точно таким же, он может быть от 12 кОм до 30 кОм.
  3. Убедитесь, что батарея 9 В, которую вы используете, совершенно новая, потому что дешевые батареи не прослужат более 5 минут с этой схемой. Если у вас есть Arduino или что-то, что может подавать вам + 5 В, вы также можете использовать его.
  4. Для вашей катушки вполне нормально иметь любое количество витков, но она должна иметь как минимум 150 витков, вы не должны быть очень точными с подсчетом.
  5. Схема может работать от 5В до 10В. Однако не пропускайте через него более 500 мА
  6. Светодиод имеет другое назначение, кроме свечения, он фактически используется для переключения транзистора, поэтому не игнорируйте его, светодиод красного цвета будет работать нормально.
  7. Ваш светодиод может светиться, а может и не светиться, когда схема находится под напряжением, вам не нужно об этом беспокоиться.
  8. Вы можете получить или не получить искру (дугу) на свободном конце вторичной катушки, вам тоже не о чем беспокоиться.Если у вас есть дуга, не трогайте ее.
  9. Всегда проверяйте исправность цепи, используя только обычную лампу КЛЛ.
  10. Добавление металлической нагрузки (фольги) поверх вторичной обмотки не является обязательным, но это обязательно улучшит результаты, но не обязательно для получения основной рабочей мощности.
  11. У вас очень мало шансов услышать шипение, поэтому не ожидайте этого.

Работа 9V Mini Tesla Coil:

Просто следуйте инструкциям по намотке катушки и используйте макетную плату для подключения, как показано на принципиальной схеме.Как только вы закончите со всем, ваша миниатюрная катушка Тесла будет выглядеть примерно так.

У меня нет резистора 22 кОм или чего-то еще, поэтому я использовал два резистора 47 кОм параллельно, как показано на схеме. Теперь, наконец, пора повеселиться. Просто включите схему, используя новую батарею 9 В и поднесите лампу CFL близко к катушке, и вы сможете наблюдать, как лампа CFL светится без какого-либо подключения сама по себе, как показано в видео ниже.Вы также можете добиться того же эффекта на ламповых лампах. Поиграйте с этим, есть намного больше возможностей для улучшения проекта, увеличив номинальный ток или увеличив количество витков на вторичной катушке, чтобы получить дуги на свободном конце вторичной катушки. Но все это осталось для нового руководства.

Вы также можете проверить, работает ли схема с помощью мультиметра , просто переведите мультиметр в режим напряжения. Коснитесь черным щупом на земле цепи и оставьте красный щуп парить в воздухе, мультиметр должен иметь возможность считывать очень высокое напряжение, как показано ниже, где измерительный прибор показывает очень высокое напряжение 1247 В.Вы уже были предупреждены, будьте очень осторожны с этими установками высокого напряжения. Узнайте здесь Как пользоваться цифровым мультиметром .

Вы также можете проверить наличие потока с помощью мультиметра зажимного типа в режиме NCV. Когда вы поднесете мультиметр к катушке, он начнет пищать, загораясь.

Но подождите !!! …., а если ваша лампочка не горит. Не волнуйтесь, это где-то очень тонкая проблема.Наиболее распространенное решение, которое нужно попробовать в первую очередь, — это изменить полярность вашей первичной катушки, то есть подключить коллекторный конец первичной катушки к плюсу батареи, а положительный конец первичной катушки батареи к штырю коллектора. Это должно помочь вам решить проблему. В противном случае попробуйте использовать новую батарею 9 В или другой надежный источник питания.

Даже тогда, если вы столкнетесь с какой-либо проблемой, убедитесь, что вы прочитали заголовок распространенного заблуждения выше, и проверьте подключение вашей цепи. Если все не получается, не стесняйтесь размещать свою проблему в комментариях ниже.Я сделаю все возможное, чтобы ваша схема заработала.

Катушка Тесла Руководство по проектированию, строительству и эксплуатации

Теория работы

Дизайн

Я не собираюсь давать подробное объяснение, потому что несколько других людей уже сделали это (см. Ссылки ниже). Кроме того, людям, желающим построить катушку Тесла, не нужно глубокое понимание работы катушки Тесла. Однако я предложу краткое описание работы катушки Тесла, которое должно помочь вам спроектировать и построить катушку Тесла.

Катушка Тесла — это резонансный трансформатор, содержащий первичный и вторичный LC-контур. Две цепи LC слабо связаны друг с другом. Питание в первичную цепь подается через трансформатор, который заряжает конденсатор. В конце концов, напряжение на конденсаторе увеличится настолько, что приведет к короткому замыканию искрового промежутка. Конденсатор разряжается через искровой промежуток в первичную обмотку. Энергия будет колебаться между первичным конденсатором и первичной катушкой индуктивности на высоких частотах (обычно 100–300 кГц).Первичная катушка соединена с индуктором во вторичной цепи, называемой вторичной катушкой. К верхней части вторичной обмотки прикреплена верхняя нагрузка, которая обеспечивает емкость для вторичной LC-цепи. Когда первичный контур колеблется, энергия индуцируется во вторичной катушке, где напряжение увеличивается во много раз. Вокруг верхней нагрузки и дуги разряда молнии возникает поле высокого напряжения и слабого тока, что является прекрасным проявлением великолепия. Первичный и вторичный LC-контуры должны колебаться с одинаковой частотой для достижения максимальной передачи мощности.Цепи в катушке обычно «настраиваются» на одну и ту же частоту путем регулировки индуктивности первичной катушки.

Этот материал, защищенный авторскими правами, был незаконно использован без разрешения владельца. Посетите сайт www.teslacoildesign.com, чтобы найти оригинальную и самую последнюю версию этого материала.

Для более подробного описания рекомендую следующие ресурсы:

Катушка Тесла от Криса Герекоса
Крис написал выдающуюся статью, предлагающую очень подробное и техническое объяснение работы катушки Тесла.Он также делится своим опытом создания катушки Тесла «Зевс». Статья в формате pdf.

Теория катушки Тесла

, Терри Блейк http://www.tb3.com/tesla/theory.html

Страница Ричарда Бернетта http://www.richieburnett.co.uk/tesla.shtml

Источник питания

Конструкция

Источник питания представляет собой высоковольтный трансформатор, используемый для зарядки первичного конденсатора. Трансформаторы с неоновыми вывесками (NST) являются наиболее распространенными источниками питания, используемыми в катушках Тесла малых и средних размеров.В остальной части руководства я буду называть трансформатор источника питания NST.

Эти расчеты будут использоваться для определения первичного конденсатора оптимального размера (в следующем разделе).

NST VA = NST V выход × NST I выход

NST Импеданс (Ом) = NST V выход ∕ NST I выход

Нам не требуется рассчитывать NST ватт, но это может быть полезно при выборе резисторов, предохранителей, калибра проводов и т. Д.

NST Ватт = ((0,6 ∕ NST VA 0,5 ) + 1) × NST VA

Конденсатор коррекции коэффициента мощности (PFC) может быть подключен к входным клеммам NST для коррекции фазы переменного тока и повышения эффективности. Оптимальная емкость PFC находится по следующему уравнению.

Емкость PFC (мкФ) = NST VA ∕ (2 × pi × NST F дюйм × (NST V дюйм 2 )) × 1000000

Где:
F в — входная частота
pi = 3.14

Первичная емкость

Конструкция

Первичный конденсатор используется с первичной катушкой для создания первичной LC-цепи. Конденсатор резонансного размера может повредить NST, поэтому настоятельно рекомендуется использовать конденсатор большего размера (LTR). Конденсатор LTR также обеспечивает большую мощность через катушку Тесла. Различные первичные зазоры (статические или синхронные вращающиеся) потребуют первичных конденсаторов разного размера.

Этот материал, защищенный авторскими правами, был незаконно использован без разрешения владельца.Посетите сайт www.teslacoildesign.com, чтобы найти оригинальную и самую последнюю версию этого материала.

Емкость первичного резонатора (нФ) = 1 ∕ (2 × pi × импеданс NST × NST F дюйм ) × 1000000

Статическая емкость первичного преобразователя частоты (нФ) = емкость первичного резонатора × 1,618

Первичная емкость синхронизации LTR (нФ) = 0,83 × (NST I на выходе ∕ (2 × NST F на выходе ) ∕ NST V на выходе ) × 1000000000

Вторичная обмотка

Конструкция

Вторичная обмотка используется с верхней нагрузкой для создания вторичной LC-цепи.

Вторичная катушка обычно должна иметь от 800 до 1200 витков. Некоторые вторичные катушки могут иметь 2000 витков. Для намотки катушки используется магнитный провод. Между витками всегда есть небольшое пространство, поэтому уравнение предполагает, что витки катушки идеальны на 97%.

витков вторичной катушки = (1 ∕ (диаметр провода магнита + 0,000001)) × высота намотки вторичного провода × 0,97

Емкость вторичной катушки будет использоваться для расчета резонансной частоты вторичного LC-контура.Размеры катушки указаны в дюймах.

Вторичная емкость (пФ) = (0,29 × высота намотки вторичного провода + (0,41 × (Диаметр вторичной формы 2)) + (1,94 × sqrt (((Диаметр вторичной формы 2) 3 ) ∕ Высота намотки вторичного провода) )

Отношение высоты к ширине должно быть около 5: 1 для катушек Тесла малого размера, 4: 1 для катушек Тесла среднего размера и около 3: 1 для больших катушек Тесла. Обратитесь к разделу конструкции вторичной обмотки, чтобы определить малые, средние и большие.

Этот материал, защищенный авторскими правами, был незаконно использован без разрешения владельца. Посетите сайт www.teslacoildesign.com, чтобы найти оригинальную и самую последнюю версию этого материала.

Вторичная высота Отношение ширины = Высота намотки вторичной проволоки ∕ Диаметр вторичной формы

Длина вторичной катушки используется для расчета веса провода. Раньше считалось, что длина провода вторичной катушки должна соответствовать длине четверти волны резонансной частоты катушки Тесла.Однако с тех пор было установлено, что в этом нет необходимости.

Длина провода вторичной катушки (футы) = (Количество витков вторичной катушки × (Диаметр вторичной обмотки × пи)) ∕ 12

Магнитная проволока обычно продается на вес, поэтому важно знать требуемый вес проволоки.

Масса провода вторичной обмотки (фунты) = pi × ((Диаметр неизолированного провода вторичной обмотки 2) 2 ) × Длина провода вторичной обмотки × 3,86

Индуктивность вторичной катушки будет использоваться для расчета резонансной частоты вторичного LC-контура.

Вторичная индуктивность (мГн) = ((((Вторичная обмотка витков 2 ) × ((Диаметр вторичной формы 2) 2 )) ∕ ((9 × (Диаметр вторичной формы 2)) + (10 × Вторичный диаметр Высота намотки провода)))) × 0,001

Верхняя нагрузка

Конструкция

Верхняя нагрузка используется со вторичной обмоткой для создания вторичного LC-контура. Обычно используется форма тороида или сферы. Диаметр кольца относится к кольцу в форме тороида. Общий диаметр означает наибольшую длину от края до края тороида.Я нашел несколько уравнений для верхних нагрузок разного размера. В любом случае, не зная, какое из них наиболее точное, я использую среднее значение всех уравнений.

Для больших или малых тороидов с диаметром кольца <3 дюймов или диаметром кольца> 20 дюймов используйте среднее значение трех расчетов емкости тороида.

Емкость тороида 1 (пФ) = ((1 + (0,2781 — диаметр кольца ∕ (общий диаметр))) × 2,8 × sqrt ((pi × (общий диаметр × диаметр кольца)) ∕ 4))

Емкость тороида 2 (пФ) = (1.28 — Диаметр кольца ∕ Общий диаметр) × sqrt (2 × pi × Диаметр кольца × (Общий диаметр — Диаметр кольца))

Емкость тороида 3 (пФ) = 4,43927641749 × ((0,5 × (Диаметр кольца × (Общий диаметр — диаметр кольца))) 0,5 )

Емкость тороида (пФ) = (Емкость тороида 1 + Емкость тороида 2 + Емкость тороида 3) ∕ 3

Диаметр кольца от 3 до 6 дюймов

Нижняя емкость тороида = 1,6079 × общий диаметр 0.8419

Верхняя емкость тороида = 2,0233 × общий диаметр 0,8085

Емкость тороида (пФ) = (((Диаметр кольца — 3) 3) × (Верхняя емкость тороида — Нижняя емкость тороида)) + Нижняя емкость тороида

Диаметр кольца от 6 до 12 дюймов

Нижняя емкость тороида = 2,0233 × общий диаметр 0,8085

Верхняя емкость тороида = 2,0586 × общий диаметр 0,8365

Емкость тороида (пФ) = (((Диаметр кольца — 6) 6) × (Верхняя емкость тороида — Нижняя емкость тороида)) + Нижняя емкость тороида

Диаметр кольца от 12 до 20 дюймов

Нижняя емкость тороида = 2.0586 × Общий диаметр 0,8365

Верхняя емкость тороида = 2,2628 × общий диаметр 0,8339

Емкость тороида (пФ) = (((Диаметр кольца — 12) 12) × (Верхняя емкость тороида — Нижняя емкость тороида)) + Нижняя емкость тороида

Малые катушки Тесла могут использовать верхнюю нагрузку сферической формы.

Емкость сферы (пФ) = 2,83915 × (Диаметр сферы 2)

Диаметр сферы = окружность ∕ pi

Общая вторичная емкость включает емкость вторичной катушки и емкость верхней нагрузки.Если вы используете несколько верхних нагрузок, сложите их емкость, чтобы рассчитать общую вторичную емкость. Общая вторичная емкость будет использоваться для расчета вторичной резонансной частоты.

Общая емкость вторичной обмотки = емкость вторичной обмотки + емкость максимальной нагрузки

Резонансная частота вторичного LC-контура будет использоваться для расчета индуктивности первичной катушки, необходимой для настройки катушки Тесла.

Частота вторичного резонанса (кГц) = 1 (2 × pi × sqrt ((Вторичная индуктивность × 0.001) × (Общая вторичная емкость × 0,000001)))

Первичная катушка

Конструкция

Первичная катушка используется с первичным конденсатором для создания первичной LC-цепи. Первичная катушка также отвечает за передачу энергии вторичной катушке.

Во-первых, мы должны определить индуктивность, необходимую для настройки катушки Тесла. После того, как индуктивность рассчитана для каждого витка первичной катушки, мы можем использовать значение «Необходимая первичная индуктивность», чтобы указать правильный виток, на котором мы должны отвести первичную обмотку.Он также укажет минимальное количество витков, необходимое в первичной катушке. Конечно, у первичной катушки должно быть несколько дополнительных витков — на всякий случай, если они вам понадобятся.

Необходимая первичная индуктивность (H) = 1 ∕ (4 × pi 2 × (вторичный F res × 1000) 2 × первичная емкость × 0,000000001)

Где:
F res — частота вторичного резонанса

Следующие уравнения позволяют рассчитать размеры первичной катушки и индуктивность катушки на каждом витке.К сожалению, вам может потребоваться выполнить эти уравнения несколько раз, чтобы определить индуктивность на каждом витке. Конечно, программа TeslaMap может быстро и легко рассчитать размеры и индуктивность катушки до 100 витков.

Гипотенуза первичной обмотки = (Диаметр провода первичной обмотки + расстояние между проводами первичной обмотки) × Обороты

Соседняя сторона первичной катушки = Гипотенуза первичной катушки × cos (toRadians (Угол наклона первичной катушки))

Диаметр первичной катушки = (смежная сторона первичной катушки × 2) + Диаметр центрального отверстия первичной катушки

Высота первичной катушки = Диаметр провода первичной катушки + Прилегающая сторона первичной катушки × tan (toRadians (угол наклона первичной катушки))

Длина провода первичной катушки (фут) = (Диаметр первичной катушки × пи) ∕ 12

Средний радиус намотки первичной катушки = (Диаметр центрального отверстия первичной катушки 2) + (Гипотенуза первичной катушки 2)

Плоская индуктивность первичной катушки = (Средний радиус намотки первичной катушки 2 × витков 2 ) ∕ ((8 × Средний радиус намотки первичной катушки) + (11 × Гипотенуза первичной катушки))

Радиус намотки первичной катушки = (Диаметр центрального отверстия первичной катушки 2) + (Диаметр проволоки первичной катушки 2)

Спираль индуктивности первичной катушки = ((Количество витков × Радиус намотки первичной катушки) 2 ) ∕ ((9 × Радиус намотки первичной катушки) + (10 × Высота первичной катушки))

Индуктивность катушки конической формы определяется путем вычисления индуктивности плоской и спиральной катушки и использования среднего значения двух катушек, взвешенных по углу наклона.

Процент угла = 0,01 × (Угол наклона первичной катушки × (100/90)

Инвертированный процент угла = (100 — (Угол в процентах × 100)) × 0,01

Индуктивность первичной катушки (мкГн) = (Винтовая индуктивность первичной катушки × угол в процентах) + (плоская индуктивность первичной катушки × инвертированный угол в процентах)

Образец конструкции

Дизайн

Это довольно типичная конструкция катушки Тесла с использованием статического искрового промежутка, который должен быть хорошей отправной точкой для катушки Тесла малого и среднего размера.Эта конструкция должна создавать дуги длиной более 2 футов с указанной входной мощностью.

Расчетный параметр Значение (стандарт) Значение (метрическое)
NST Входное напряжение 120 В 240 В
Входная частота NST 60 Гц 50 Гц
NST Выходное напряжение 15 кВ 15 кВ
NST Выходной ток 30 мА 30 мА
NST Ватт 463 Вт 463 Вт
Первичная емкость (MMC) 9 нФ 9 нФ
Диаметр первичной катушки 0.25 дюймов (трубка) 6 мм (трубка)
Расстояние между проводами первичной катушки 0,25 дюйма 6 мм
Диаметр центрального отверстия первичной катушки 6 из 15 см
Угол наклона первичной катушки 0 градусов (плоский) 0 градусов (плоский)
Калибр провода магнита вторичной катушки 24 AWG 0.5 мм
Масса вторичного провода 1,37 фунта 612 г
Высота намотки вторичной катушки 22 из 56 см
Диаметр вторичной обмотки 4,4 дюйма 11 см
Вторичная обмотка витков 972 972
Отношение высоты вторичной обмотки к ширине 5: 1 5: 1
Диаметр тороидального кольца 4 из 11 см
Общий диаметр тороида 16 из 40 см

При указанном выше источнике питания (15 кВ) и статическом искровом промежутке первичная емкость (MMC) должна быть около 8.6нФ (рассчитано с помощью программы TeslaMap). В MMC должно быть достаточно последовательно соединенных конденсаторов для минимального номинального напряжения 15 кВ RMS * 1,414 = 21 кВ пиковое. Рекомендуется удвоить номинальное пиковое напряжение до 40 кВ. При использовании конденсаторов 0,15 мкФ, 2 кВ (Cornell Dubilier 942C20P15K-F) цепочка из 20, соединенных последовательно, будет иметь 7,5 нФ при 40 кВ (также рассчитано с помощью программы TeslaMap), что достаточно близко для наших нужд.

Этот дизайн был создан с помощью программы TeslaMap. Файл дизайна доступен для скачивания.После загрузки вы можете открывать, редактировать и сохранять дизайн с помощью программы TeslaMap. Полное резюме проекта также было экспортировано в текстовый файл из программы TeslaMap, который можно загрузить и просмотреть в любом текстовом редакторе и большинстве браузеров.

PBS: Тесла — Мастер молнии: Катушка Тесла

Чтобы исследовать электрическую сферу высоких частот и высокого напряжения, Тесла изобрел устройство, которое раздвинуло границы понимания электричества.Ни один из типичных компонентов схемы в то время не был неизвестен, но ее конструкция и работа вместе дали уникальные результаты — не в последнюю очередь благодаря мастерским усовершенствованиям Tesla в конструкции ключевых элементов, в частности специального трансформатора или катушки, которая находится в сердце производительности схемы.

Такое устройство впервые появилось в патенте США № 454 622 Теслы (1891 г.) для использования в новых, более эффективных системах освещения. В своей базовой форме схема требует источника питания, большого конденсатора, самой катушки (трансформатора) и регулируемых электродов искрового разрядника.Для чего нужны эти компоненты и для чего они нужны?

Осцилляторы

Конденсаторы (или конденсаторы) и индуктивности (или катушки), электрически говоря, несколько противоположны в работе. В то время как ток в конденсаторе быстро нарастает по мере его зарядки, напряжение падает. В катушке индуктивности напряжение ощущается немедленно, в то время как ток замедляется, поскольку он работает против магнитного поля, которое его собственный канал создает в катушке.Если размеры катушки и конденсатора выбраны и выбраны так, чтобы они действовали с точно противоположной синхронизацией — с пиком напряжения в катушке так же, как оно достигает минимума в конденсаторе, — тогда схема может никогда не достичь электрически тихого, стабильного состояния. Немного похоже на плескание воды в ванне, можно заставить ток и напряжение гоняться друг за другом взад и вперед, от конца к концу цепи. (Такой генератор часто называют контуром резервуара .)

Искровые разрядники

Чтобы заставить свой генератор «звенеть», Тесла использовал внезапные разряды, искры, через регулируемый зазор между двумя электродами.Напряжение на конденсаторе нарастает до тех пор, пока не достигнет уровня, при котором воздух в зазоре разрушается как изолятор. (Прецизионные винты устанавливают зазор зазора, так что больший или меньший зазор выбирает большее или меньшее напряжение пробоя.)

Начальный импульс очень мощный — вся энергия, накопленная в течение нескольких микросекунд, высвобождается в порыве, и этот импульс сам преобразуется в несколько более высокое напряжение при переходе от первичных обмоток катушки к вторичным обмоткам.Это, конечно, завершает лишь один цикл работы схемы. Воздушный зазор восстанавливается как изолятор, и конденсатор начинает заряжаться, пока снова не достигнет пробивного значения. Весь процесс может повторяться много тысяч раз в секунду.

Вторичная обмотка трансформатора тоже довольно особенная, она разработана Tesla для быстрой реакции на внезапный всплеск энергии и, что наиболее важно, для концентрации напряжения на одном конце в виде стоячей волны .Его длина рассчитывается таким образом, чтобы гребни волн, достигая конца и отражаясь назад, встречались и точно усиливали волны позади них. Чистый эффект — волна, пик напряжения, который кажется неподвижным.

Приложения

Если, как это произошло на практике, Тесла сделал антенну из высоковольтного конца своей вторичной обмотки, она превратилась в мощный радиопередатчик. Фактически, в первые десятилетия развития радио большинство практичных радиоприемников использовали катушки Тесла в своих передающих антеннах.Сам Тесла использовал большие или меньшие версии своего изобретения для исследования флуоресценции, рентгеновских лучей, радио, беспроводной связи, биологических эффектов и даже электромагнитной природы Земли и ее атмосферы.

Сегодня такие устройства часто эксплуатируются в высоковольтных лабораториях, а энтузиасты-любители по всему миру строят устройства меньшего размера для создания искрящихся потоковых электрических дисплеев — нетрудно достичь четверти миллиона вольт. (Один из самых первых ускорителей частиц, разработанный Рольфом Видеро в 1928 году, генерировал высокое напряжение в катушке Тесла.Катушка стала обычным явлением в электронике и используется для подачи высокого напряжения на переднюю часть кинескопов телевизора в форме, известной как обратный трансформатор.

Внутри лаборатории Указатель

Принцип работы, схема и приложения

Мир беспроводных технологий уже здесь! Бесчисленные беспроводные приложения, такие как освещение с беспроводным питанием, беспроводные умные дома, беспроводные зарядные устройства и т. Д., Развиваются благодаря беспроводной технологии.В 1891 году самое известное открытие катушки Тесла было изобретено изобретателем Никола Тесла. Тесла был одержим беспроводной передачей энергии, что привело к изобретению катушки Тесла. Эта катушка не требует сложной схемы и поэтому является частью нашей повседневной жизни, такой как дистанционное управление, смартфоны, компьютеры, рентгеновские лучи, неоновые и флуоресцентные лампы и так далее.

Что такое катушка Тесла?

Определение: Катушка Тесла — это радиочастотный генератор, который управляет двойным резонансным трансформатором с воздушным сердечником для получения высокого напряжения с малым током.

катушка тесла

Чтобы лучше понять, давайте определим, что такое радиочастотный генератор. В первую очередь, мы знаем, что электронный генератор — это устройство, которое выдает электрические сигналы либо синусоидальной, либо прямоугольной формы. Этот электронный генератор генерирует сигналы в радиочастотном диапазоне от 20 кГц до 100 ГГц, известный как радиочастотный генератор.

Принцип работы катушки Тесла

Эта катушка способна создавать выходное напряжение до нескольких миллионов вольт в зависимости от размера катушки.Катушка Тесла работает по принципу достижения состояния, называемого резонансом. Здесь первичная обмотка испускает огромное количество тока во вторичную обмотку, чтобы управлять вторичной цепью с максимальной энергией. Точно настроенная схема помогает направлять ток от первичной ко вторичной цепи с настроенной резонансной частотой.

Схема катушки Тесла

Эта катушка состоит из двух основных частей — первичной и вторичной, каждая из которых имеет свой собственный конденсатор. Искровой разрядник соединяет катушки и конденсаторы.Функция искрового разрядника заключается в генерации искры для возбуждения системы. Принципиальная схема катушки Тесла

Рабочая катушка Тесла

В этой катушке используется специальный трансформатор, называемый резонансным трансформатором, радиочастотным трансформатором или колебательным трансформатором.

Первичная катушка подключена к источнику питания, а вторичная катушка трансформатора слабо соединена, чтобы обеспечить ее резонанс. Конденсатор, подключенный параллельно цепи трансформатора, действует как схема настройки или LC-цепь для генерации сигналов с определенной частотой.

Первичная обмотка трансформатора, иначе называемая резонансным трансформатором, повышается для генерирования очень высоких уровней напряжения в диапазоне от 2 кВ до 30 кВ, которое, в свою очередь, заряжает конденсатор. При накоплении огромного количества заряда в конденсаторе, в конечном итоге, пробивается воздух искрового промежутка. Конденсатор испускает огромное количество тока через катушку Тесла (L1, L2), которая, в свою очередь, генерирует высокое напряжение на выходе.

Частота колебаний

Комбинация конденсатора и первичной обмотки «L1» схемы образует настроенную схему.Эта настроенная схема гарантирует, что первичная и вторичная цепи точно настроены для резонанса на одной и той же частоте. Резонансные частоты первичного ‘f1’ и вторичного контуров ‘f2’ и задаются выражением,

f1 = 1 / 2π L1C1 и f2 = 1 / 2π L2C2

Поскольку вторичный контур не может быть отрегулирован, подвижный отвод на «L1» используется для настройки первичного контура до тех пор, пока оба контура не будут резонировать на одной и той же частоте.Следовательно, частота первичной обмотки такая же, как и вторичной.

f = 1 / 2π√L1C1 = 1 / 2π L2C2

Условие для первичного и вторичного резонанса на одной и той же частоте:

L1C1 = выход L2C2

Напряжение в резонансном трансформаторе не зависит от отношения числа витков, как в обычном трансформаторе. Как только цикл начинается и лонжерон срабатывает, энергия первичной цепи накапливается в первичном конденсаторе «С1», а напряжение, при котором искра гаснет, составляет «V1».

W1 = 1 / 2C1V1 2

Аналогично, энергия во вторичной катушке определяется как,

W2 = 1 / 2C2V2 2

Предполагая, что потери энергии нет, W2 = W1. Упрощая приведенное выше уравнение, мы получаем

V2 = V1√C1 / C2 = V1√L2 / L1

В приведенном выше уравнении пиковое напряжение может быть достигнуто, когда пробой воздуха не происходит. Пиковое напряжение — это напряжение, при котором воздух разрушается и начинает проводить.

Преимущества / недостатки катушки Тесла

Преимущества:

  • Позволяет равномерно распределять напряжение по катушкам обмотки.
  • Повышает напряжение медленно и, следовательно, без повреждений.
  • Отличная производительность.
  • Использование трехфазных выпрямителей для более высоких мощностей может обеспечить колоссальное распределение нагрузки.

Недостатки:

  • Катушка Тесла представляет несколько опасностей для здоровья из-за высокочастотного излучения высокого напряжения, включая ожог кожи, повреждение нервной системы и сердца.
  • Влечет за собой высокие затраты на покупку большого сглаживающего конденсатора постоянного тока.
  • Построение цепи занимает много времени, так как она должна быть идеальной для резонанса.

Применение катушки Тесла

В настоящее время этим катушкам не требуются большие сложные схемы для получения высокого напряжения. Тем не менее, небольшие катушки Тесла находят свое применение в целом ряде секторов.

  • Сварка алюминия
  • Эти катушки используются в автомобилях для зажигания свечей зажигания
  • Созданные вентиляторы катушек Тесла, используемые для создания искусственного освещения, звуков, подобных музыке Катушки Тесла в индустрии развлечений и образования используются в качестве аттракционов на ярмарках электроники и научных музеях
  • Высоковакуумные системы и зажигалки
  • Детекторы утечки вакуумной системы

Часто задаваемые вопросы

1).Что делают катушки Тесла?

Эта катушка представляет собой радиочастотный генератор, который приводит в действие резонансный трансформатор для генерации высокого напряжения при низком токе.

2). Может ли катушка Тесла заряжать телефон?

В наши дни смартфоны выпускаются со встроенной беспроводной зарядкой, в которой используется принцип катушки Тесла.

3). Катушка Тесла опасна?

Катушка и ее оборудование очень опасны, так как они создают очень высокие напряжения и токи, которые не могут быть обеспечены человеческим телом

4).Почему катушки тесла создают музыку?

Обычно эта катушка преобразует воздух вокруг себя в плазму, которая изменяет громкость и заставляет волны распространяться во всех направлениях, создавая звук / музыку. Это происходит на высокой частоте от 20 до 100 кГц.

5). Как Tesla передавала электричество по беспроводной сети?

Искровой разрядник используется для соединения конденсаторов и двух катушек. Поскольку мощность подается через трансформатор, он вырабатывает необходимый ток и питает всю цепь.

Таким образом, это все об обзоре катушки Тесла, которую можно использовать для выработки электричества высокого напряжения, низкого тока и высокой частоты. Катушка Tesla может передавать электричество по беспроводной сети на расстояние до нескольких километров. Мы позаботились о том, чтобы эта статья дала читателю представление о работе катушки Тесла, ее преимуществах и недостатках, а также о ее применении. Поистине, его изобретение беспроводной передачи электроэнергии изменило способ общения в мире.

Конструктор катушек Тесла

Конструктор катушек Тесла


    Tesla Coil Designer проста в использовании
    программа, которая позволит вам создавать мощные молниеносные машины!


    Если вы новичок в катушках Тесла, это
    большие мотки проволоки, которые часто можно увидеть в фильмах Франкенштейна, создающие болты
    молнии на заднем плане.

    Конструкция этих катушек делает замечательный
    хобби, и имеет удивительное количество применений в результате экспериментов в
    беспроводная энергия (что было мечтой г-на Теслы) для получения рентгеновских лучей, лазер
    блоки питания, плазменные шары, шаровая молния и многие другие изобретения.
    Было замечено много «странных» эффектов, таких как остановка автомобильных двигателей,
    человек, держащий рядом проводника, теряет контроль над мышцами (безболезненно)
    а также средство пропуска миллионов вольт через человеческое тело во время
    очевидно не причиняя вреда.

    ВНИМАНИЕ:
    С помощью этой программы строители создали искры высотой до 6 футов.
    Вы должны помнить, что это не игрушки, хотя вывод
    эти катушки занимательны и удивительны.

    Программное обеспечение работает со всеми ПК типа IBM,
    даже те, у кого старые графические карты, и выполняет все сложные уравнения
    для лейденских банок, пластинчатых конденсаторов, первичных и вторичных катушек одним щелчком.
    Это позволяет вам думать о том, что вы хотите, чтобы ваша катушка делала, а не
    математика.Планируется более «Windowsy» версия для тех, кто
    в списке рассылки.

    Если вы строите впервые, или иным образом
    новичок в Tesla Construction, вы захотите получить простое руководство по сборке
    по теме в дополнение к ПО. Источники для этих руководств
    приведены в конце «он-лайн» руководства в программе.
    Вы также можете получить все основы в выпуске за сентябрь 99, который я написал для Nuts & Volts.
    на http://www.nutsvolts.com/ или
    более подробная (математическая) статья в мартовском номере
    соответствия
    . http://www.conformity.com

    Я предлагаю версию 2.11 программы бесплатно
    для загрузки и использования. Все, что я прошу, это сфотографировать
    свою будущую катушку и отправьте мне в коллекцию!

    Если вам нравится бесплатная версия, у меня есть
    гораздо более мощный зарегистрированный компакт-диск, который содержит все необходимые вам заметки для разработчиков и доступен в Интернете.
    страницу также за небольшую плату. Эта плата позволяет мне продолжать строительство
    и экспериментирую сам!

    Спасибо за посещение The Tesla Coil Designer
    страницу и продолжайте экспериментировать.Невозможно сказать, что скрывается просто
    5 минут в будущее!


    Нажмите любую кнопку ниже .:

Скачать
ваша копия The Tesla Coil Designer версии 2.11.

Получить
информация о зарегистрированной версии / компакт-диске.

Пригласите меня в свою школу или город на дикое электрическое шоу!
См.
объекты, приятно разрушенные моей катушкой выше … (Да, это немного банально, я ничего не могу с собой поделать. 🙂
Ссылки
на другие страницы и проекты Уолта Нуна.

Новое
Фотографии с сайта Nuts & Volts Builders.


Нажмите
Здесь с бесплатными инструкциями по созданию собственной катушки! (Формат PDF.)


Дизайн страницы (C) 1998-2018 Уолт Нун

Нажмите
здесь бесплатно информация о получении и продвижении собственной страницы!

Участник №66.

Посвящается: катушка Николы Тесла
Индукционная катушка высоковольтных генераторов молний Van de Graff dirod
первичный вторичный конденсатор пластинчатого конденсатора Кириллянского солнечного элемента лейденская банка
разрядный терминал с высоким потенциалом The Tesla Coil Designer Levitation Уолта Полдня
искра в миллион вольт

.