Схема защиты литиевого аккумулятора: Плата балансировки литиевых аккумуляторов: назначение и схема

Плата балансировки литиевых аккумуляторов: назначение и схема

При последовательном подключении батарей наблюдается разброс параметров изделий, что не позволяет поддерживать требуемое выходное напряжение. Проблема возникает из-за неравномерной зарядки элементов. Для устранения дефекта используется плата балансировки литиевых аккумуляторов, обеспечивающая равномерный заряд изделий и предотвращающая перезаряд элементов аккумуляторной банки.

Узнайте о назначении платы балансировки литиевых аккумуляторов.

Балансировочная плата для литиевых аккумуляторов

При соединении нескольких источников постоянного тока в общую банку по последовательной методике обеспечивается суммирование напряжений. При этом емкость аккумулятора будет определяться элементом с минимальным значением параметра.

Для зарядки устройства используется две методики — последовательная и параллельная. При первом способе осуществляется подача питания от единого источника, напряжение соответствует значению параметра на полностью заряженном аккумуляторе.

Параллельный метод предусматривает независимую зарядку каждого изделия, входящего в аккумуляторную банку. В конструкцию зарядного блока входят не связанные между собой источники питания. Для контроля параметров электрического тока применяются индивидуальные устройства. Зарядные блоки подобной конструкции встречаются редко, для восполнения емкости литиевых аккумуляторов применяется последовательная схема зарядки.

При совместной зарядке необходимо не допустить повышения напряжения на клеммах элементов, составляющих аккумуляторную банку, выше допустимого предела (зависит от модели батареи).

Из-за различных характеристик элементов пороговое значение достигается в разное время.

Пользователь вынужден прекратить зарядку после фиксации допустимого напряжения на первом источнике, при этом остальные компоненты АКБ остаются недозаряженными, что негативно влияет на конечную емкость батареи.

При эксплуатации элемента питания происходит неравномерное снижение напряжения на выводах элементов. Разрядка прекращается в момент фиксации минимально допустимого порога на секции, не получившей необходимого заряда.

Для исключения возможности возникновения ситуации в цепь питания батареи вводится балансировочный блок, который контролирует параметры на каждой секции. При достижении запрограммированного значения происходит параллельная коммутация балластного резистора, отсекающего подачу питания на клеммы секции.

Балластное сопротивление отключает питание в случае превышения силы тока, идущего через резистор, над параметром в цепи питания секции аккумулятора. Остальные компоненты аккумуляторной банки продолжают заряжаться.

По мере фиксации максимального напряжения происходит последовательное отключение цепей питания. После подключения всех имеющихся балластных сопротивлений зарядка прекращается. Напряжение всех секций будет равняться значению параметра, на который отрегулирован балансир.

Плата защиты литиевого аккумулятора

Защитные платы для Li-ion или Li-pol аккумуляторов дополнительно защищают изделия от взрыва или воспламенения, происходящего из-за избытка газов при перезарядке. Следует учитывать, что регулярная эксплуатация недозаряженных элементов приводит к деградации катода и анода, что сокращает срок службы изделия.

Часть аккумуляторных банок оснащается платой защиты в заводских условиях. Для самодельных устройств и некоторых аккумуляторов потребуется монтаж дополнительного узла фабричного изготовления или собранного своими руками.

Схема платы балансировки литиевых аккумуляторов.

В конструкции всех литий-ионных или литий-полимерных банок предусмотрена защитная плата PCB или PCM. Устройство обеспечивает разрыв цепи при возникновении аварийной ситуации (например, короткого замыкания).

Защитный блок не оснащен регуляторами напряжения или силы тока, допускается разрядка элементов до 2,5 В и ниже (зависит от качества контроллера), что негативно влияет на рабочие характеристики аккумуляторов. Плата балансировки MBS устанавливается вместо защитного устройства, узел обеспечивает защиту от замыканий и равномерную зарядку элементов.

Схемы плат защиты литиевого аккумулятора

На рынке представлены следующие балансировочные платы фабричного изготовления:

  1. Устройство на базе стабилизатора LM317 обеспечивает подачу на батареи напряжения 4,2 В.
    В конструкции предусмотрены регулировочные сопротивления, в процессе зарядки работает контрольный светодиод красного цвета. Для подключения устройства используется внешний блок питания, коммутация к портам USB не предусмотрена конструкцией.
  2. Китайские производители массово выпускают балансировочные платы на основе стабилизатора ТР4056, которые дополнительно оснащены защитой от переполюсовки аккумуляторов. Устройство предназначено для подключения к портам USB, предусмотрен регулятор параметров зарядки.
    Оборудование контролирует процесс зарядки в автоматическом режиме, при достижении заданной емкости производится плавное снижение силы зарядного тока. В конструкции предусмотрен штекер для установки дополнительного температурного сенсора.
  3. Устройство на основе чипа NCP1835 отличается уменьшенными габаритами и универсальностью, допускается коммутация аккумуляторов с различными параметрами. Балансир обеспечивает зарядку сильно разряженных элементов путем подачи тока малой силы, предусмотрена защита от установки батареек (со звуковой индикацией). В конструкции модуля предусмотрен регулятор времени зарядки.
  4. Узел на базе контроллера зарядки S8254AA, оснащенный дополнительной балансировкой для аккумуляторов 18650. Оборудование поддерживает защиту от переразрядки и перезарядки, имеется контроль над коротким замыканием.
    Платы на основе контроллера S8254AA не оснащаются лампами, отображающими статус зарядки. Поставщики выпускают аналогичный блок без балансира, изделие отличается применением гетинакса красного цвета. Детали с балансиром изготовлены на основе гетинакса темно-синего цвета.

Базовая схема балансира самодельного типа включает в себя стабилитрон TL431A (с повышенной точностью управления) и транзистор BD140 (относится к типу изделий с прямой проводимостью).

В цепь включаются сопротивления, которые допускается заменить диодами 1N4007. При использовании диодов учитывается нагрев элементов при работе, при изготовлении монтажной платы принимают во внимание необходимость охлаждения узлов.

Для регулировки требуется подать постоянное напряжение 5 В на входы устройства. В цепи предусмотрен резистор, изменяя значение сопротивления, необходимо добиться напряжения 4,2 В на колодках, предназначенных для установки литий-ионных аккумуляторов.

Для подачи питания в рабочем режиме используется трансформатор, напряжение равно суммарному значению подключенных аккумуляторов. На каждый элемент подается запас напряжения в пределах 0,15 В. Например, для зарядки 3 элементов требуется подвести напряжение 3*4,2+3*0,15=13,05 В.

Устройство обеспечивает зарядку батарей до момента достижения напряжения 4,2 В. После фиксации параметра включается стабилитрон, который активирует подачу питания через транзистор к балластным резисторам, имеющим сопротивление 4 Ом. В цепи предусматриваются контрольные светодиоды, которые включаются при подаче питания в балластную цепь.

Упрощенный блок на основе стабилитрона TL431A строится с использованием полупроводникового транзистора, удовлетворяющего параметрам зарядки. Поскольку элемент при работе нагревается, то необходимо предусмотреть охлаждение. В основе выбора типа радиатора лежит расчет по мощности.

Например, при напряжении 4,2 В и силе тока 0,5 А расчетная мощность составит 2,1 Вт. При увеличении параметров зарядки мощность возрастает, что вызывает сложности с теплоотводом. В конструкции используется 2 сопротивления, регулирующих пороговое значение напряжения.

После подбора сопротивлений и транзистора изготавливается требуемое количество балансировочных блоков, которые ставятся на аккумуляторы во время зарядки.

Небольшие габариты устройств позволяют закрепить узлы на общей пластине. При монтаже нескольких балансиров требуется обеспечить изоляцию корпусов транзисторов (из-за подачи отрицательного питания от батареи).

Блок разрядки Li-ion аккумуляторов для длительного хранения

Вот привалит иногда маленькое счастье в виде нескольких полуживых аккумуляторных батарей от ноутбуков. После ревизии их содержимого остаётся некоторое количество условно годных для использования банок типа «18650». И, как обычно, прямо сейчас некуда их применить.

Однако и хранить их полностью заряженными или полностью разряженными (как обычно получается после проверки их ёмкости) нерационально — параметры аккумуляторов, особенно бэушных, в процессе хранения быстро «уплывают» безвозвратно.

В статье я хочу поделиться своим опытом работы с литий-ионными аккумуляторами. Расскажу об их хранении и правильной подготовке к хранению.

Содержание / Contents

Как говорят многочисленные источники в Сети, хранить литиевые аккумуляторы рекомендуется при остаточном заряде около 40%, что для Li-Io составляет напряжение 3,6-3,7 вольта. Вручную подгонять такое напряжение затруднительно.

Обычные зарядники (например, мой OPUS BT-C3100), не имеют функции формирования напряжения хранения аккумуляторов.

У зарядного iMAX-B6 есть такой пункт в меню, но работать он может только с одним аккумулятором одновременно, т. к. это одноканальный прибор.

Для правильной автоматической разрядки нам нужен параллельный стабилизатор напряжения около 3,65±0,05 Вольта, с ограничением тока и индикацией окончания разряда аккумулятора. И желательно многоканальный.

Режим балансировки для нескольких последовательно соединённых бэушных аккумуляторов даже не рассматривал, т. к. они имеют очень большой разброс ёмкостей и внутренних сопротивлений.

У меня скопилось солидное количество деталей от разного электронного «железа». Не зря же разбирал и собирал! Их можно приложить к данной задаче.

После некоторых раздумий родилась такая простая схема.

Основа схемы — U1 регулируемый стабилитрон TL431. С помощью делителя на R6 и R7 устанавливается пороговое напряжение открытия этого стабилитрона. При открытии U1 и протекании тока через R4 и R5 открывается транзистор Т2 и подаёт плюс батареи на затвор Т3. Открывшись, Т3 подключает к батарее нагрузку — лампочку.

Лампа (6,3 В × 0,3 А) выбрана для «мягкой» разрядки аккумулятора. Лампочка является своего рода бареттером, и стабилизирует ток разрядки. В начале разряда — около 300 мА при напряжении на аккумуляторе 4,25 В и 60-80 мА при 3,65 В в конце разряда. Второе назначение лампы — «наглядность» процесса разрядки: лампа постепенно гаснет.

При приближении напряжения аккумулятора к нижнему установленному пределу ток через лампу понижается до величины около 60-80 мА, и лампочка уже не светится, но разряд ещё идёт. Падение напряжения на лампе составляет около 1-1,5 Вольт.

Для индикации окончания разряда служит каскад на Т1 и светодиоде HL. Пока идёт разряд и напряжение на лампочке превышает 0,6 В, транзистор Т1 остаётся открытым, светодиод HL светится.

При достижении аккумулятором напряжения нижнего установленного предела регулируемый стабилитрон TL431 закрывается, соответственно — последовательно закрываются Т2, Т3 и Т1. Светодиод HL гаснет.
В этом состоянии разрядник, потребляя менее 1 мА, и может находиться продолжительное время. Про аккумулятор в разряднике можно забыть на пару недель, и ничего неприятного с ним не случится.

Соблюдайте полярность подключения! Разрядник не боится переполюсовки аккумулятора. При этом горит лампочка (через встроенный в MOSFET диод), аккумулятор разряжается. Но режим разряда не контролируется, и НЕ СВЕТИТСЯ светодиод. В таком режиме можно просадить аккумулятор до напряжения 0,6 вольта, чем окончательно «огорчить» его и себя. Будьте внимательны.

Блок разрядки, собранный и испытанный на макетке.

Оба варианта печатных плат забирайте в архиве в разделе файлов.

Плата под выводные детали — удобна для повторения в домашних условиях.
Плата под smd. Я заказывал у китайцев.Я предлагаю два варианта платы: для выводного и smd монтажа, поэтому далее упоминаю детали для обоих типов.

Т1 и Т2 — любые маломощные кремниевые PNP транзисторы. В выводном корпусе TO-92 подойдут: BC556B, 2SA733, 2SA1206, КТ203, КТ208, КТ209, КТ3107, КТ502 и масса других. Перед установкой следует верно определить выводы Э-Б-К и правильно запаять.

Рекомендую «обуть» ноги транзисторов. Легко запастись разноцветными ПВХ-трубками, сняв их с кроссовки или кабеля UTP.

Например, на вывод базы оденьте изолятор белого цвета, на коллектор — красного, на эмиттер NPN — синего, на эмиттер PNP — чёрного или коричневого, или какого у вас больше. Цветовая схема на ваш вкус. И вы уже никогда не ошибётесь с распайкой выводов.

PNP транзисторы в планарном корпусе SOT23: BC807, а также другие, с обозначениями W06, 5Ap, 3Ep, K3N, 2A, 2D, 2L, t06, DKs.

C другой стороны, одинаковые цифробуковки на корпусе не всегда однозначны.
Например, в справочнике Туруты по SMD, за 2014 год, значкам «W06» соответствуют два разных транзистора:
W06 — PDTC124EU npn, 50V, 100mA, 200mW SOT-323
W06 — PMSS3906 pnp, 60V, 100mA, 200mW SOT-323
Под обозначением «t06» — тоже два разных транзистора, причём эти же!
А под сочетаниями «2A», «2D», «2L» вообще по десятку разных приборов, и часто совсем не транзисторов.
То есть проверять и проверять! Транзисторы я проверял китайским, ставшим уже народным, многофункциональным тестером MG328.

Т3 — полевой n-канальный MOSFET транзистор, у меня планарный APM3054N в корпусе TO-252, с негодной материнской платы. Важное условие — напряжение открытия MOSFETa должно быть не более 2,5 Вольт, желательно даже около 2,0. Подходят большинство низковольтных полевиков со старых материнок.

Высоковольтные, силовые полевики не подходят — у них напряжение открытия (sourse-gate) превышает 3,5 вольта, и они просто не откроются.

Полевики в больших планарных корпусах (ТО-263, DD-PAK) — CEB6030, K3570, K3296, K3572, 15N03, 14N03, FDB6670, FDB6035.
В корпусе TO252 — T40N03, APM2510, 70T03, P75N02.

У всех этих полевичков напряжение открытия 1,8 — 2,2 Вольта. Практически все они с напряжением «сток-исток» около 25-30 Вольт, не более. Вымерял сам, из того, что у меня есть в наличии.
У меня нет низковольтных полевиков в корпусе ТО-220, поэтому ничего о них сказать не могу.

Реальный совет — купите на рынке или найдите совсем старую убитую материнку, распотрошите и выберите нужные детальки. Всё есть на них.

Нагрузка — лампочка 6,3 В × 0,3 А, применялись повсеместно для освещения шкал ламповых радиоприёмников. Более позднее их применение — новогодние гирлянды и т. п. При отсутствии таких лампочек можно установить резистор 10-15 Ом на мощность не менее 1 Вт.

Светодиод HL — любой, видимого цвета, у меня он жёлтый.

Резистор R7 — желательно многооборотный — точнее настройка, и напряжение не прыгает со временем.
Остальные резисторы — какие есть в 50-летних запасах Родины, т. е. любые, по наличию, ±50% от номинала.

Если планируется более серьёзная нагрузка — в качестве Т3 необходимо применить более мощный транзистор и радиатор.

Перед первым включением желательно проверить монтаж. Это быстрее и проще, чем искать и менять умершие детали на уже смонтированной плате с плотным расположением.

На вход разрядника подайте напряжение 3,65 Вольта от регулируемого источника и с помощью R7 установите порог зажигания светодиода. Потом проверьте поведение схемы при несколько запредельных значениях нужных параметров (4,5 — 3,0) В. Но можно ограничиться и только установкой порогового напряжения.

Если вы считаете, что порог должен быть другим — устанавливайте свой. В принципе, на основе этой схемы можно рассчитать разрядник с любым разумным напряжением и мощностью. Изменяются только параметры делителя R6-R7 и мощность транзистора Т3 (полевики можно параллелить).

Если будет делаться схема для одиночного аккумулятора «18650», то в качестве клеммников для подключения к аккумуляторам очень удобно использовать магниты из негодных ноутбучных винчестеров.

Эту идею нашёл где-то в форумах Датагора. Держатся замечательно, при небольших токах проблем нет. Только провода нужно припаивать к железной подошве (!) магнита, а не к самому магниту. Иначе — размагнитятся, лично проверил.

Припаивать провод желательно, предварительно пропустив его через одно из отверстий железного основания. Так провод переломится намного позднее. Я насдувал феном деталей со старой материнки и собрал многоканальный разрядник на SMD. Очень удачно применил держатель на 4 банки «18650», рекомендую.
Отличие схемы только в том, что при настройке вместо R7 подпаивался переменный резистор, устанавливался нужный порог напряжения. После замерялась полученная величина переменного резистора, и впаивался постоянный, ближайшего номинала. Мне так показалось проще, т. к. ±0,05-0,1 вольта не принципиально.

Лампочка впаивается в плату между точкой U4 и точками 1—1 (шина +5 Вольт). На фото ниже это хорошо видно.

Плата в работе.1. В разрядник нужно вставлять предварительно заряженный (!) аккумулятор.

2. Всё описанное выше можно, и даже желательно, применять и к новым Li-Io аккумуляторам для их хранения более 1-2-х месяцев. Например, на зимнее межсезонье.

3. Естественно, эта методика применима ко всем другим Li-Io аккумуляторам, например — от сотовых телефонов. У них иногда барахлит контроллер, а сам аккумулятор — в рабочем состоянии.

4. Аккумуляторы, разряженные до «хранительного» напряжения, желательно сохранять при температуре +2… +4 °С. Лучшее место хранения — верхняя полка холодильника, у задней стенки, в герметичном пакете, и в непрозрачной светлой коробочке, чтоб жена не сразу поняла

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Плату под SMD при печати зеркалить не нужно. Монтаж идёт со стороны фольги.

Спасибо за внимание!

Александр (Roll)

Пермский край г. Чусовой

Я немолод, 1952 года рождения.
До 1994-го года жил в Молдавии, имел позывной UO5OID, 1-я категория.

Свой первый усилитель собрал в 8 классе, 6Н2П + 6П14П. Колонка 2х6ГД2 и 1ГД1 (все — Рига).
Колонка — обычная тумбочка, заполненная подушками. 🙂
До сих пор приятно вспомнить. Чисто и мягко звучало всё.

Пришёл за звуком для души и опытом для разума.
В последнее время склоняюсь к электропитанию конструкций.

BMS платы — полный обзор контроллеров для защиты аккумуляторов

В наш современный век всеобщей популяризации литиевых батарей любой, даже простой пользователь бытовых устройств, должен хотя-бы примерно представлять их функционирование и факторы риска при их эксплуатации. Среди произошедших несчастных случаев с аккумуляторами (например, электронных сигарет) лишь небольшой процент обязан производственному браку, чаще всего неисправности возникают в результате неправильной эксплуатации.

В нашей статье мы рассмотрим новейшие технологии, которые призваны защитить литиевые аккумуляторы, а также расскажем, почему они так важны.

Из теории литиевых аккумуляторов можно узнать, что им противопоказан перезаряд, переразряд или разряд слишком большими токами, а также короткие замыкания. При переразряде, в аккумуляторе образуются металлические связи между катодом и анодом, которые приводят к короткому замыканию при зарядке аккумулятора, что может привести к порче не только элементов питания, но и зарядного устройства. Перезаряд же (набор аккумулятором напряжения больше разрешенного) почти сразу ведёт к возгоранию, а зачастую даже к взрыву.

Для горения литиевых аккумуляторов не нужен кислород – оно происходит анаэробно, поэтому стандартные методы тушения не подходят; также, при реакции лития с водой выделяется еще и горючий газ водород, который только ухудшает ситуацию. Разряд высокими токами приводит к вздутию аккумулятора, а если нарушается целостность оболочки – происходит реакция лития с водяными парами в воздухе, что само по себе способно спровоцировать возгорание.

Всё это отнюдь не перечёркивает явные преимущества аккумуляторов, среди них:

  • большая плотность энергии на единицу массы
  • низкий процент саморазряда
  • практически полное отсутствие эффекта памяти (когда заряд неполностью разряженного элемента приводит к снижению ёмкости)
  • большой температурный диапазон работы

Незначительное снижение напряжения в процессе разряда накладывает некоторые обязанности на пользователя. Нельзя допустить превышения максимального напряжения (4.25 В), снижение напряжения ниже минимального (2.75 В), а также превышения рабочего тока, который отличается для каждой модели. И в этом хитром деле нам помогут специальные устройства – BMS-контроллеры!

В переводе с английского, BMS (Battery Management System) – система управления батареей. Понятие слишком широкое, поэтому оно описывает почти все устройства, так или иначе обеспечивающие корректную работу аккумуляторов в данном устройстве, начиная с простых плат защиты или балансировки, заканчивая сложными микроконтроллерными устройствами, подсчитывающими ток разряда и количество циклов заряда (например, как в батареях ноутбуков). Мы не будем рассматривать сложные устройства – как правило, они специфичны и не предназначаются для рядового радиолюбителя, а выпускаются только под заказ для крупных производителей устройств.

То, что продаётся повсеместно, условно можно разделить на четыре категории:

  • балансиры
  • защиты (по току, напряжению)
  • платы, обеспечивающие заряд (да, они тоже считаются устройствами BMS)
  • те или иные комбинации вышеперечисленных вариантов, вплоть до объединения всего в одно устройство

Чем функциональней и разветвлённей защита – тем больше ресурс работы вашего аккумулятора.

Давайте посмотрим, по какому принципу BMS системы выполняют своё предназначение.

Структурно на плате можно выделить:

  • микросхема защиты
  • аналоговая обвязка (для определения тока/балансировки аккумуляторов)
  • силовые транзисторы (для отключения нагрузки)

Рассмотри подробнее работу каждой из защит.

Существует множество вариантов узнать, какой ток течёт по линии. Самый распространённый – шунт (измерение падения напряжения на резисторе с низким сопротивлением и большой мощностью), но он требует большой точности измерений и весьма громоздкий. Метод с измерением на основе эффекта Холла лишён этих недостатков, но стоит дороже, поэтому самый распространённый метод определения КЗ на линии – измерение напряжения, которое проседает практически до нуля в режиме КЗ.

Современные контроллеры позволяют сделать это в очень короткий промежуток времени, за который ущерб не нанесётся ни подключенному устройству, ни самому аккумулятору. Но защита по току может функционировать и на шунте – ведь в случае BMS тут не нужно точное измерение, важен лишь переход падения напряжения через определённый порог. Как только событие наступает, контроллер сразу же отключает нагрузку при помощи транзисторов.

С этой защитой разобраться попроще, так как измерение напряжения легко можно сделать, используя аналогово-цифровой преобразователь. Но и тут есть некая специфика – стоит отметить, что если контроллер защищает большую сборку из последовательно соединённых аккумуляторов, то обычно он меряет напряжение каждой банки персонально, так как ввиду мельчайших различий в элементах они имеют мельчайшие же различия по ёмкости, что выливается в неравномерный разряд и возможность высадить «в ноль» отдельный элемент.

Некоторые системы не подключают нагрузку, не дождавшись дозаряда аккумулятора до определённого напряжения после срабатывания триггера по переразряду, то есть недостаточно подзарядить элемент пару минут, чтобы он поработал ещё хоть малое время – обычно необходимо зарядить до номинального напряжения (3.6 – 4.2В, в зависимости от типа аккумулятора).

Редко встречается в современных устройствах, но не зря большинство аккумуляторов для телефонов оборудовано третьим контактом – это и есть вывод терморезистора (резистора, имеющего чёткую зависимость сопротивления от окружающей температуры). Обычно перегрев не наступает сам собой и раньше успевают сработать другие виды защиты – например, перегрев может быть вызван коротким замыканием.

Зарядка литиевых аккумуляторов происходит в 2 этапа: CC (constant current, постоянный ток) и CV (constantvoltage, постоянное напряжение). В течение первого этапа зарядное устройство постепенно поднимает напряжение таким образом, чтобы заряжаемый элемент брал заданный ток (обычное рекомендованное значение равно 1 ёмкости аккумулятора). Когда напряжение достигает 4В, зарядка переходит на второй этап и поддерживает напряжение 4.2В на батарее.

Когда элемент практически перестанет брать ток, он считается заряженным. На практике, алгоритм можно реализовать и при помощи обычного лабораторного блока питания, но зачем, если есть специализированные микросхемы, заранее «заточенные» под выполнение этой последовательности действий, например, самая известная из них – TP4056, способна заряжать током до 1А.

Напоследок мы оставили самую интересную функцию BMS – функцию балансировки элементов многобаночного аккумулятора.

Итак, что же такое балансировка? Сам процесс её подразумевает выравнивание напряжений на элементах батареи, соединённых последовательно для повышения общего напряжения сборки. Из-за небольших отличиях в ёмкости батарей они заряжаются за немного разное время, и когда одна банка может уже достигнуть апогея зарядки, остальные могут ещё недобрать заряд.

При разряде такой сборки большими токами наиболее заряженные элементы по закону Ома возьмут на себя больший ток (при равном сопротивлении ток будет зависеть от напряжения, которое находится в знаменателе формулы), что вызовет их ускоренный износ и может вывести элемент из строя. Для того, чтобы избежать этой проблемы, применяют аккумуляторные балансиры – специальные устройства, выравнивающие напряжения на банках до одного уровня.

Активные балансиры производят балансировку уже при зарядке – зарядив одну банку сборки, они отключают её от питания, продолжая заряжать вторую. Как яркий пример такого устройства – популярное среди моделистов ЗУ Imax B6, в режиме Balance оно сразу проверяет напряжения индивидуально на каждой банке и справляется с этим на отлично.

Пассивные балансиры наоборот, разряжают элементы до одного значения малыми токами через резисторы. Их основной плюс – они не требуют внешнего питания, а также являются более точными за счёт применения аналоговых комплектующих (и более дешёвыми, так как не содержат сложных микросхем).

Рассмотрим некоторые примеры готовых плат BMS:

Итак, в завершение хочется сказать, что под каждую задачу на современном рынке можно найти такую плату менеджмента заряда аккумуляторов, которая удовлетворит Ваши потребности и надёжно защитит устройство и сами аккумуляторы.

Не стоит недооценивать важность техники безопасности, и если в небольших устройствах с низкими токами потребления защита является правилом хорошего тона, то для высокотоковых проектов она практически панацея, способная спасти даже жизнь в непредвиденной ситуации.

Творите, а магазин Вольтик.ру всегда предоставит возможность выбрать и купить нужные Вам компоненты!

Платы, балансировки литиевых аккумуляторов — сборка и система расположения

Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.

Балансировочная плата для литиевых аккумуляторов

Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.

Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.

Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.

Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.

Плата защиты литиевого аккумулятора

Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.

Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена , как обязательный элемент во всех аккумуляторов для бытовых приборов.

РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.

Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.

Схемы плат защиты литиевого аккумулятора

Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.

Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.

LM317

Простое зарядное устройство, стабилизатор тока.

Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.

ТР4056

Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.

Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.

Этапы контроля:

  • постоянно, напряжение на аккумуляторе;
  • предзарядка, если на клеммах меньше 2,9В;
  • максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
  • при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
  • При токе 0,1С зарядка отключается.

Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.

NCP1835

Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.

Особенности:

  • малое количество элементов;
  • заряжает сильно разряженные аккумуляторы током около 30 мА;
  • детектирует незаряжаемые батарейки, подает сигнал;
  • можно задать время заряда от 6 до 748 минут.

Видео

Посмотрите на видео полный обзор платы заряда ТП4056

Зарядка литиевых элементов

Зарядка литиевых элементов

Elliott Sound Products Зарядка литиевых элементов

Авторские права © 2016 — Род Эллиотт (ESP)
Страница создана в ноябре 2016 г., опубликована в феврале 2017 г.
Последнее обновление в октябре 2018 г.

верхний


Указатель статей

Основной указатель


Содержание

Введение
1 — Система управления батареями (BMS)
2 — Профиль зарядки
3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)
4 — Цепь зарядки одной ячейки ИС
5 — Зарядка нескольких элементов
6 — Защита батареи
7 — Мониторинг состояния заряда (SOC)
8 — Проекты с батарейным питанием
Выводы
Ссылки


Введение

Зарядка литиевых батарей или элементов (теоретически) проста, но может быть сопряжена с трудностями, о чем свидетельствуют многочисленные серьезные отказы в коммерческих продуктах. Они варьируются от портативных компьютеров, мобильных («сотовых») телефонов до так называемых «ховербордов» (также называемых балансировочными щитами) и даже самолетов. Противовесы стали причиной ряда пожаров в домах и разрушили или повредили многие объекты недвижимости по всему миру. Если элементы не заряжены должным образом, существует высокий риск вентиляции (выброса газов под высоким давлением), что часто сопровождается возгоранием.

Литий — самый легкий из всех металлических элементов, он плавает на воде. Он очень мягкий, но быстро окисляется на воздухе.Воздействия водяного пара и кислорода часто бывает достаточно, чтобы вызвать возгорание, особенно если присутствует тепло (например, из-за перезарядки литиевого элемента). Воздействие влажного / влажного воздуха вызывает образование газообразного водорода (из водяного пара), который, конечно же, легко воспламеняется. Литий плавится при 180 ° C. Большинство авиакомпаний настаивают на том, чтобы литиевые элементы и батареи заряжались не более чем на 30% при транспортировке из-за вполне реального риска катастрофического пожара. Несмотря на ограничения, литиевые батареи теперь используются почти во всем новом оборудовании из-за очень высокой плотности энергии и небольшого веса.

Батареи имеют скорость заряда и разряда, обозначенную буквой «C» — емкость батареи или элемента в Ач или мАч (ампер или миллиампер-час). Таким образом, аккумулятор емкостью 1,8 Ач (1800 мАч) имеет рейтинг «C» 1,8 А. Это означает, что (по крайней мере теоретически) аккумулятор может обеспечивать ток 180 мА в течение 10 часов (0,1 ° C), 1,8 A в течение 1 часа или 18 A в течение 6 минут (0,1 час или 10 ° C). В зависимости от конструкции литиевые батареи могут обеспечивать ток до 30 ° C и более, поэтому наша гипотетическая батарея емкостью 1800 мАч теоретически может обеспечивать ток 54A в течение 2 минут.Емкость также может быть указана в Втч (ватт-часах), хотя эта цифра обычно не используется, кроме как в рекламных брошюрах.

В США и некоторых других странах оценка Wh требуется транспортным компаниям, чтобы они могли определить необходимый стандарт упаковки. Один аккумулятор 1,8 Ач имеет накопленную энергию 6,7 Втч [4] . В качестве альтернативы может потребоваться указать содержание лития. В справочнике также показано, как это можно рассчитать, хотя любой сделанный расчет будет только приблизительным, если производитель батарей специально не укажет содержание лития.Причиной этого является риск возгорания — перевозчики не любят, когда грузы загораются, а содержание лития может определять способ доставки грузов. Если батареи поставляются отдельно (не встроены в оборудование), они должны быть заряжены не более чем на 30%.

В отличие от некоторых старых аккумуляторных технологий, литиевые батареи нельзя (и не следует) оставлять на плавающем заряде, хотя может быть возможно, если напряжение поддерживается ниже максимального напряжения заряда. Для большинства используемых ячеек максимальное напряжение ячейки равно 4.2 В, называемое напряжением «заряда насыщения». Напряжение заряда должно поддерживаться на этом уровне только достаточно долго, чтобы ток заряда упал до 10% от начального значения или 1С. Однако это может быть интерпретировано, потому что начальный ток заряда может иметь широкий диапазон, в зависимости от батареи и зарядного устройства.

К сожалению, несмотря на то, что существует бесчисленное количество статей о зарядке литиевых батарей, существует почти столько же различных предложений, рекомендаций и мнений, сколько и статей.Одна из основных вещей, которая важна при зарядке литиевой батареи, — это убедиться, что напряжение на каждой ячейке никогда не превышает максимально допустимое, а это означает, что необходимо контролировать каждую ячейку в батарее. Существует множество доступных ИС, которые были специально разработаны для балансной зарядки литиевых батарей, при этом некоторые системы довольно сложны, но чрезвычайно универсальны с точки зрения обеспечения оптимальной производительности.

В то время как традиционные литий-ионные (Li-Ion) или литий-полимерные (Li-Po) имеют номинальное напряжение ячейки 3.70 В, Li-железо-фосфат (LiFePO 4 , также известный как LFP — феррофосфат лития) составляет исключение с номинальным напряжением элемента 3,20 В и зарядкой до 3,65 В. Многие коммерческие батареи LiFePO 4 имеют встроенные схемы балансировки и защиты, и их нужно только подключить к соответствующему зарядному устройству. Относительно новым дополнением является литий-титанат (LTO) с номинальным напряжением ячейки 2,40 В и зарядкой до 2,85 В.

Зарядные устройства для этих альтернативных литиево-химических элементов несовместимы с обычными 3.70-вольтовый Li-Ion. Необходимо обеспечить идентификацию систем и обеспечение правильного зарядного напряжения. Литиевая батарея на 3,70 В в зарядном устройстве, разработанном для LiFePO 4 , не получит достаточного заряда; LiFePO 4 в обычном зарядном устройстве вызовет перезарядку. В отличие от многих других химических элементов, литий-ионные элементы не могут поглощать перезаряд, поэтому необходимо знать конкретный химический состав аккумулятора и адаптировать условия зарядки к ним.

Литий-ионные элементы

безопасно работают в пределах указанных рабочих напряжений, но аккумулятор (или элемент внутри аккумулятора) становится нестабильным, если случайно зарядить его до напряжения выше указанного. При длительной зарядке выше 4,30 В литий-ионного элемента, рассчитанного на 4,20 В, на аноде будет металлический литий. Катодный материал становится окислителем, теряет стабильность и производит двуокись углерода (CO2). Давление в ячейке возрастает, и если заряду позволяют продолжить, устройство прерывания тока, отвечающее за безопасность ячейки, отключается при 1000–1380 кПа (145–200 фунтов на квадратный дюйм). При дальнейшем повышении давления защитная мембрана на некоторых литий-ионных элементах разрывается при давлении около 3450 кПа (500 фунтов на квадратный дюйм), и в конечном итоге ячейка может вентилироваться — с пламенем!

Не все ячейки рассчитаны на то, чтобы выдерживать высокое внутреннее давление, и будут иметь видимые выпуклости задолго до того, как давление достигнет значений, близких к указанным.Это верный признак того, что элемент (или аккумулятор) поврежден, и его нельзя использовать снова. К сожалению, во многих статьях, которые вы найдете в Интернете, обсуждая платы баланса (в частности), говорится о качестве элементов (или их отсутствии) и / или качестве зарядного устройства (то же самое), но не упоминается обсуждаемая система управления батареями (BMS). следующий.

Это один из наиболее важных элементов зарядного устройства для литиевых батарей, но редко упоминается в большинстве статей, посвященных возгоранию батарей.В общем, предполагается (или неизвестно автору), что аккумуляторная батарея включает — или , если включает — схему защиты, чтобы гарантировать, что каждая ячейка контролируется и защищена от перезарядки. Вероятно, что дешевые (или поддельные) аккумуляторные блоки вообще не содержат схемы защиты, и любой аккумулятор без этой важной схемы, как правило, следует избегать, если у вас нет надлежащего внешнего зарядного устройства с многополюсным разъемом. Проблема в том, что продавцы редко раскрывают (или даже знают), есть ли у аккумулятора защита или нет.


1 — Система управления батареями (BMS)

Это не особенно полезно, но многие продавцы аккумуляторов и зарядных устройств не проводят различия между контролем аккумулятора и защитой аккумулятора . Это две отдельные функции, и, как правило, они представляют собой отдельные элементы схемы. К сожалению, термин «BMS» может означать либо мониторинг, либо защиту, в значительной степени в зависимости от определения, используемого продавцом, и / или понимания того, что на самом деле продается.

Я буду использовать термин «балансировка» применительно к управлению процессом зарядки, а для аккумуляторов (в отличие от отдельных ячеек) это процесс балансировки, который гарантирует, что каждая ячейка тщательно контролируется во время зарядки для поддержания правильного максимального значения ячейки. вольтаж. Защита Цепи обычно подключены к батарее постоянно и часто встроены в батарею. Они описаны ниже. В некоторых случаях защита и балансировка могут быть предоставлены как комплексное решение, и в этом случае оно действительно заслуживает названия «BMS» или «система управления батареями».

Для правильного управления процессом зарядки более чем одной ячейки необходима система балансировки батареи . Цепи баланса отвечают за обеспечение того, чтобы напряжение на любой ячейке никогда не превышало максимально допустимое, и часто интегрируются с зарядным устройством. В некоторых есть дополнительные возможности, например, мониторинг температуры ячейки. В больших установках отдельные контроллеры ячеек обмениваются данными с центральным «главным» контроллером, который обеспечивает сигнализацию устройству, на которое подается питание, с указанием состояния заряда (поскольку этот параметр может быть определен — это меньше, чем точная наука), наряду с любыми другими данные, которые можно считать важными.

Для сравнительно простых батарей с количеством ячеек от 2 до 5, дающих номинальное напряжение от 7,4 В до 18,5 В соответственно, баланс ячеек не представляет особой сложности. Это действительно становится проблемой, когда, возможно, 110 ячеек соединены последовательно, что дает выход около 400 В (как, например, в электромобиле). Ячейки также могут быть соединены параллельно, чаще всего как последовательно-параллельная сеть. В общей терминологии (особенно для «любительских» батарей для моделей самолетов и т.п.) батарея будет обозначаться как 5S (5 ячеек серии) или 4S2P (4 ячейки серии, каждая из которых состоит из 2 элементов параллельно).

Параллельная работа ячеек не является проблемой, и возможно (хотя обычно не рекомендуется), что они могут иметь разную емкость. Конечно, они должны использовать ту же химию. При последовательном запуске ячейки должны быть как можно ближе к идентичности. Конечно, по мере того, как звонки стареют, они будут делать это с разной скоростью — некоторые клетки всегда будут портиться быстрее, чем другие. Именно здесь система балансировки становится важной, потому что элемент (ы) с наименьшей емкостью будет заряжаться (и разряжаться) быстрее, чем другие в упаковке.Большинство балансных зарядных устройств используют регулятор на каждой ячейке, что гарантирует, что напряжение заряда каждой отдельной ячейки никогда не превышает максимально допустимого.

В простейшей форме это можно сделать с помощью цепочки прецизионных стабилитронов, что на самом деле довольно близко к обычно используемым системам. Напряжение должно быть очень точным и в идеале должно находиться в пределах 50 мВ от желаемого максимального напряжения заряда. Хотя напряжение насыщения заряда обычно составляет 4,2 В на элемент, срок службы батареи можно продлить, ограничив напряжение заряда до 4.1 вольт. Естественно, это приводит к немного меньшему накоплению энергии.

Два основных компонента BMS будут рассмотрены отдельно ниже. Их можно дополнить мониторингом производительности (состояние заряда, оставшаяся емкость и т. Д.), Но в этой статье основное внимание уделяется важным моментам — тем, которые максимизируют безопасность и срок службы батареи. Так называемые «топливомеры» — это отдельная тема, и здесь они рассматриваются лишь вскользь.


2 — Профиль зарядки

На графике показаны основные элементы процесса зарядки.Первоначально зарядное устройство работает в режиме постоянного тока (ограничение тока) с максимальным током в идеале не более 1С (1,8 А для элемента или аккумулятора 1,8 Ач). Часто это будет меньше, а иногда и намного меньше. При зарядке при 0,1C (180 мА) время зарядки составит 30 часов, если применяется заряд полного насыщения. Однако, когда используется сравнительно медленная зарядка (обычно менее 0,2 ° C), можно прекратить зарядку, как только элемент (я) достигнет 4,2 В, и заряд насыщения не потребуется.Например, на основе «нового» алгоритма зарядки элементу, показанному на рисунке 1, может потребоваться от 12 до 15 часов для зарядки при 0,1 ° C, и цикл зарядки завершается, как только напряжение достигает 4,2 вольт. Это несколько мягче по сравнению с литий-ионным элементом, и напряжение напряжения минимизировано.

Рисунок 1 — Профиль заряда литий-ионных аккумуляторов (1 элемент)

Как ясно видно на графике, быстрая зарядка означает, что емкость отстает от напряжения заряда, а 1С достаточно быстрая — особенно для аккумуляторов, предназначенных для устройств с низким потреблением энергии.Примерно через 35 минут напряжение (почти) достигло максимума 4,2 В, и ток заряда начинает падать, но элемент заряжен только примерно до 65%. Более низкая скорость заряда означает, что уровень заряда более точно соответствует напряжению. Как и все батареи, вы никогда не извлекаете столько, сколько вставляете, и обычно вам нужно вложить примерно на 10-20% больше ампер-часов (или миллиампер-часов), чем вы получите обратно во время разряда.

Некоторые зарядные устройства обеспечивают предварительный заряд, если напряжение элемента меньше 2.5 вольт. Обычно это постоянный ток, равный 1/10 от номинального полного заряда постоянного тока. Например, если ток заряда установлен на 180 мА, элемент будет заряжаться до 18 мА до тех пор, пока напряжение элемента не поднимется примерно до 3 В (это зависит от конструкции зарядного устройства). Однако большинству систем никогда не потребуется предварительная подготовка, потому что электроника (или должна!) Отключиться до того, как элемент достигнет потенциально опасного уровня разряда.

При использовании литий-ионные батареи следует хранить в прохладном месте.Нормальная комнатная температура (от 20 ° до 25 ° C) является идеальной. Не рекомендуется оставлять заряженные литиевые батареи в автомобилях на солнце, как и в любом другом месте, где температура может быть выше 30 ° C. Это вдвойне важно во время зарядки аккумулятора. При разряде требуются некоторые средства отключения, чтобы гарантировать, что напряжение элемента (любого элемента в батарее) не упадет ниже 2,5 вольт.

Обычно лучше не заряжать литиевые батареи полностью и не допускать их глубокого разряда.Срок службы батареи может быть увеличен за счет зарядки примерно до 80-90%, а не до 100%, так как это почти устраняет «напряжение напряжения», возникающее, когда напряжение элемента достигает полных 4,2 вольт. Если аккумулятор будет храниться, рекомендуется зарядка 30-40%, а не полная. Есть много рекомендаций, и большинство из них игнорируются. Однако это не вина пользователей — производители телефонов, планшетов и фотоаппаратов могут предложить вариант со сниженной оплатой — для этого достаточно вычислительной мощности.Это особенно важно для предметов, которые не имеют заменяемой пользователем батареи, потому что это часто означает, что в остальном совершенно хорошее оборудование выбраковано только потому, что батарея устала. Учитывая распространение вредоносных программ практически для каждой операционной системы, важно убедиться, что настройки заряда аккумулятора никогда не могут быть установлены таким образом, чтобы это могло вызвать повреждение.


3 — Источники питания постоянного напряжения и постоянного тока (зарядные устройства)

Во время начальной части цикла зарядки источник питания зарядного устройства должен быть постоянным.Текущее регулирование не обязательно должно быть идеальным, но оно должно быть в разумных пределах. Нас не очень волнует, действительно ли источник питания 1 А дает 1,1 А или 0,9 А, или он немного меняется в зависимости от напряжения на регуляторе. Очевидно, мы должны быть очень обеспокоены, если выяснится, что максимальный ток составляет 10 А, но этого просто не произойдет даже с довольно грубым регулятором.

Для чисто аналоговой конструкции LM317 хорошо подходит для задачи регулирования тока, а также идеально подходит для регулирования основного напряжения. Это уменьшает общую BOM (спецификацию материалов), поскольку не требуется несколько различных деталей. Конечно, это оба линейных устройства, поэтому эффективность низкая, и для них требуется напряжение питания, превышающее общее напряжение батареи, по крайней мере, на 5 вольт, а желательно несколько больше.

В качестве альтернативы использованию двух микросхем LM317 вы можете добавить пару транзисторов и резисторов для создания ограничителя тока. Однако это работает не так хорошо, площадь печатной платы будет больше, чем у версии, показанной здесь, и экономия средств минимальна.В приведенной ниже схеме не предусмотрена возможность «предварительного кондиционирования» или «пробуждения» перед подачей полного тока. Это не важно, если аккумулятор никогда не разряжается ниже 3 В, и может даже не понадобиться при минимальном напряжении 2,5 В. Если напряжение разряженного элемента меньше 2,5 В, потребуется предварительная зарядка C / 10. Если вы когда-либо заряжаете только по тарифу C / 10, более низкий тариф не требуется.

Рисунок 2 — Цепь заряда постоянного тока / постоянного напряжения

Показанная схема ограничивает ток до значения, определяемого R1.При сопротивлении 12 Ом ток составляет 100 мА (достаточно близко — на самом деле 104 мА), который задается сопротивлением и внутренним опорным напряжением 1,25 В. LM317. Для 1 А используйте 1,2 Ом (рекомендуется 5 Вт), и значение можно определить для любого необходимого тока вплоть до максимального 1,5 А, который может обеспечить LM317. При более высоком токе стабилизатору потребуется радиатор, особенно на начальном этапе заряда, когда на U1 будет значительное напряжение. Диоды предотвращают обратную полярность батареи к регулятору (U2), если батарея подключена до включения источника постоянного тока.D1 должен быть рассчитан как минимум на удвоенный максимальный ток и в идеале должен быть устройством Шоттки, чтобы минимизировать рассеяние и потери напряжения.

Это просто базовое зарядное устройство, которое может быть разработано с учетом требований, описанных выше. Однако это далеко не полная система, поскольку на данном этапе отсутствуют система управления и балансирующие схемы. Каждая система будет отличаться, но базовая схема достаточно гибкая, чтобы вместить большинство батарейных блоков из 2-4 ячеек. Зарядку можно остановить, подключив вывод «Adj» U1 к земле с помощью транзистора, как показано.Когда зарядка завершена, на конец R3 подается напряжение (5 В в порядке), и ограничитель тока отключается. Имейте в виду, что батарея будет разряжена комбинацией цепей баланса и тока, проходящего через R4, R5 и VR1 (последний составляет около 5,7 мА).


4 — Цепь зарядки одноэлементной ИС

Зарядное устройство на одну ячейку (или батареи с параллельными элементами) концептуально довольно просто. Однако при рассмотрении всех требований становится очевидным, что простого регулятора с ограничением тока, показанного выше, может быть недостаточно.Многие производители ИС имеют готовые зарядные устройства для литиевых элементов на микросхеме, при этом большинству не требуется ничего, кроме программирующего резистора, пары байпасных конденсаторов и дополнительного светодиодного индикатора. Один (из многих), который включает в себя все необходимое, — это Microchip MCP73831, показанный ниже. Большинство крупных производителей микросхем производят специализированные микросхемы, и их ассортимент огромен. TI (Texas Instruments) производит ряд устройств, предназначенных для полных приложений BMS, от одноэлементных до батарей на 400 В, используемых для электромобилей.Еще одна простая ИС — LM3622, которая доступна в нескольких версиях в зависимости от напряжения конечной точки. Также доступна версия для двухэлементной батареи, но в ней отсутствует схема балансировки, что делает ее довольно бессмысленной (IMO).

Рисунок 3 — Зарядное устройство для одной ячейки с использованием MCP73831 IC

Доступны четыре напряжения оконечной нагрузки — 4,20 В, 4,35 В, 4,40 В и 4,50 В, поэтому важно выбрать правильную версию для того типа аккумулятора, который вы будете заряжать. Режим постоянного тока управляется R2, ​​который используется для «программирования» IC.Оставление разомкнутой цепи контакта 5 («PROG») запрещает зарядку. ИС автоматически прекращает зарядку, когда напряжение достигает максимума, установленного ИС, и подает дополнительный заряд, когда напряжение элемента падает примерно до 3,95 вольт. Дополнительный светодиодный индикатор может использоваться для индикации заряда или окончания заряда, либо того и другого с помощью трехцветного светодиода или отдельных светодиодов. Выход состояния разомкнут, если ИС отключена (например, из-за перегрева) или если батарея отсутствует. После начала зарядки выходной сигнал состояния становится низким, а после завершения цикла зарядки — высоким.Обратите внимание, что эта ИС доступна только в упаковке SMD, а версии со сквозным отверстием недоступны. То же самое касается большинства устройств других производителей.

Показанное зарядное устройство представляет собой линейный регулятор, поэтому он рассеивает мощность при зарядке элемента. Если напряжение разряженной ячейки составляет 3 В, ИС будет рассеивать только 300 мВт при токе заряда 100 мА. Если увеличить до максимума, который может обеспечить ИС (500 мА), ИС будет рассеивать 1,5 Вт, а это означает, что она сильно нагреется (в конце концов, это небольшое SMD-устройство). Если напряжение элемента будет меньше 3 В (глубокий разряд из-за аварии или длительного хранения), рассеяние будет таким, что ИС почти наверняка отключится, так как у нее есть внутреннее измерение перегрева. Он будет циклически включаться и выключаться до тех пор, пока напряжение на ячейке не поднимется достаточно сильно, чтобы уменьшить рассеивание и обеспечить непрерывную работу. Зарядные устройства Switchmode намного эффективнее, но они больше, сложнее и дороже в сборке.

Некоторые контроллеры оснащены датчиком температуры или термистором для контроля температуры ячейки.Такие микросхемы, как LTC4050, будут заряжаться только при температуре от 0 ° C до 50 ° C при использовании с указанным термистором NTC (отрицательный температурный коэффициент). Другие могут быть сконструированы так, чтобы их можно было установить так, чтобы ИС сама контролировала температуру. Они предназначены для установки, когда ИС находится в прямом тепловом контакте с ячейкой. Последовательный транзистор должен быть внешним по отношению к ИС, чтобы его рассеивание не влияло на температуру кристалла ИС.

На приведенном выше рисунке резистор программирования тока установлен на 10 кОм, что устанавливает ток заряда примерно на 100 мА.В таблице данных микросхемы есть график, показывающий зависимость тока заряда от программируемого резистора, и, похоже, нет формулы, которую можно было бы применить. Резистор 2 кОм обеспечивает максимальный номинальный ток зарядки 500 мА. Как обсуждалось ранее, медленная зарядка, вероятно, является лучшим вариантом для максимального срока службы элемента, если только элемент не предназначен для быстрой зарядки. К сожалению, на ИС задано максимальное напряжение, и его нельзя уменьшить, чтобы ограничить напряжение немного меньшим значением, что продлит срок службы элемента.R1 допускает около 2,5 мА для светодиода, поэтому может потребоваться тип с высокой яркостью. При желании сопротивление R1 можно уменьшить до 470 Ом.

Для слаботочной зарядки, вероятно, нет причин не использовать источник питания с точностью 4,2 В и последовательный резистор. Процесс зарядки будет довольно медленным, но если он ограничен значением около 0,1C или 100 мА (в зависимости от того, что меньше), цикл зарядки займет около 15 часов. Резистор должен быть выбран так, чтобы обеспечить требуемый ток 1,2 В (12 Ом для 100 мА).Существует небольшая вероятность того, что слабый ток вызовет какое-либо повреждение элемента, и хотя это довольно грубый способ зарядки, нет причин, по которым он не должен работать идеально. Я пробовала, и никаких «противопоказаний» нет.


5 — Цепи балансировки аккумулятора

Хотя зарядка одной ячейки (или батареи с параллельными ячейками) довольно проста с использованием правильной (-ых) ИС (-ий), становится труднее, когда есть две или более ячейки, соединенные последовательно, для создания батареи с более высоким напряжением.Поскольку напряжение на каждой ячейке необходимо контролировать и ограничивать, вы получаете довольно сложную схему. Опять же, есть множество вариантов от большинства основных производителей ИС, и во многих случаях для управления отдельными схемами мониторинга ячеек требуется специальный микроконтроллер.

Несомненно, существуют продукты, которые не обеспечивают какой-либо формы балансировки заряда, и именно они с наибольшей вероятностью вызовут проблемы при использовании, включая возгорание. Использование литиевых батарей без правильно сбалансированного зарядного устройства вызывает проблемы, и этого не следует делать даже с самыми дешевыми продуктами.Вы можете себе представить, что в пакете из 2-х ячеек необходимо контролировать только одну ячейку, а другая будет заботиться о себе. Но это не так. Если ячейка, которая не отслеживается, имеет меньшую емкость, она будет заряжаться быстрее, чем другая ячейка. Оно может достичь опасного напряжения до того, как контролируемая ячейка достигнет своего максимума.

Принцип многоканального мониторинга достаточно прост по своей концепции. Только когда вы поймете, что к каждой ячейке необходимо применить довольно сложные и точные схемы, это становится пугающим.Поскольку все ячейки находятся под разным напряжением, главному контроллеру необходимы схемы сдвига уровня для каждого монитора ячейки. Здесь могут использоваться оптоизоляторы или более «традиционные» схемы переключения уровня, но последние обычно не подходят для высоковольтных аккумуляторных блоков.

Рисунок 4 — Упрощенные схемы многоячеечной балансировки

Примечание: Показанные схемы являются концептуальными и предназначены для демонстрации основных принципов. Они не предназначены для конструирования, и микросхемы, показанные на «А», не являются каким-либо конкретным устройством, так как «настоящие» используемые ИС часто управляются специальным микроконтроллером.Нет смысла отправлять мне электронное письмо с просьбой указать типы устройств, потому что они не существуют как отдельная ИС. Идея состоит только в том, чтобы показать основы — это не проектная статья, она предназначена в первую очередь для того, чтобы осветить проблемы, с которыми вы столкнетесь при работе с ячейками серии LiPo.

Существует два класса схем балансировки ячеек — активные и пассивные (оба показаны пассивными). Пассивные системы сравнительно просты и могут работать очень хорошо, но у них низкая энергоэффективность.Вряд ли это будет проблемой для небольших батарей (2-5 ячеек), заряжаемых по относительно низким ценам (1С или меньше). Тем не менее, это важно для больших пакетов, используемых в электрических велосипедах или автомобилях, потому что они требуют значительных денег для зарядки, поэтому неэффективность BMS приводит к более высокой стоимости одной зарядки и значительным потерям энергии.

Я не собираюсь даже пытаться показать полную схему для многоячеечной балансировки, потому что большинство из них полагаются на очень специализированные ИС, и конечный результат одинаков независимо от того, кто производит микросхемы.Система, показанная на «A», использует управляющий сигнал для зарядного устройства, чтобы уменьшить его ток, когда первая ячейка в батарее достигает максимального напряжения. Резистор, показанный на рисунке, может пропускать максимальный ток 75 мА при 4,2 В, и зарядное устройство не должно обеспечивать больше этого значения, иначе цепь разряда не сможет предотвратить перезаряд. Каждый резистор рассеивает только 315 мВт, но это быстро складывается для очень большого аккумуляторного блока, и именно здесь активная балансировка становится важной.

Реализация устройств от разных производителей сильно различается и зависит от принятого подхода.Некоторые из них управляются микропроцессорами и предоставляют микропроцессору информацию о состоянии для регулировки скорости заряда, в то время как другие являются автономными и часто в основном аналоговыми. Схема, показанная выше (‘B’), упрощена, но также вполне может использоваться, как показано. Три потенциометра по 20 кОм отрегулированы таким образом, чтобы на каждый регулятор подавалось ровно 4,2 В. Когда действует балансировка (в конце заряда), доступный ток от зарядного устройства должен быть менее 50 мА, иначе шунтирующие регуляторы не смогут ограничить напряжение.У этого типа балансировщика есть важное ограничение — если одна ячейка выходит из строя (низкое напряжение или короткое замыкание), оставшиеся ячейки будут серьезно заряжены!

Однако (и это важно), как и во многих других решениях, он не может оставаться подключенным, когда аккумулятор не заряжается. На каждой ячейке имеется постоянный сток около 100 мкА, и, если предположить, что ячейки 1,8 Ач, как и раньше, они будут полностью разряжены примерно через 2 года. Хотя это может показаться не проблемой, если оборудование не используется в течение некоторого времени, вполне возможно, что элементы разрядятся ниже точки невозврата.

Довольно много зарядных устройств, которые я тестировал, находятся в таком же положении. Их нельзя оставлять подключенными к батарее, поэтому необходимы дополнительные схемы, чтобы гарантировать отключение балансных цепей при отсутствии питания от зарядного устройства. Один продукт, который я разработал для клиента, нуждался во внутреннем балансировочном зарядном устройстве, поэтому была добавлена ​​релейная цепь для отключения балансных цепей, если зарядное устройство не было запитано. См. Раздел 8 для получения более подробной информации об этом подходе.

Для любой системы «активных стабилитронов», как показано выше, жизненно важно, чтобы выходное напряжение зарядного устройства было жестко регулируемым и имело температурное слежение, которое соответствует напряжению эмиттер-база транзисторов (Q1 – Q3). Зарядное устройство могло бы легко продолжать обеспечивать свой максимальный выходной ток, но все это рассеивалось бы в цепях байпаса элементов. Это также делает невозможным определение фактического тока батареи, поэтому он, вероятно, не выключится, когда должен.


6 — Схемы защиты аккумулятора

Защита аккумулятора и / или элемента важна для того, чтобы гарантировать, что ни один элемент не заряжен сверх безопасных пределов, и чтобы контролировать аккумулятор при разряде, чтобы отключить аккумулятор в случае неисправности (например, чрезмерный ток или температура), и чтобы включить выключить аккумулятор, если его напряжение упадет ниже допустимого минимума.В идеале каждая ячейка в батарее должна контролироваться, чтобы каждая ячейка была защищена от глубокого разряда. Для литий-ионных элементов они не должны разряжаться ниже 2,5 В, и даже лучше, если минимальное напряжение элемента будет ограничено до 3 вольт. Потеря емкости в результате более высокого напряжения отсечки невелика, поскольку напряжение литиевого элемента падает очень быстро, когда оно достигает предела разряда.

Поскольку эти цепи обычно встроены в аккумуляторную батарею и постоянно подключены, важно, чтобы они потребляли минимально возможный ток.Все, что потребляет более нескольких микроампер, разряжает батарею, особенно если ее емкость относительно мала. Элемент (или аккумулятор) на 500 мА / ч будет полностью разряжен за 500 часов (20 дней), если цепь потребляет 1 мА, но это продлится почти до 3 лет, если потребление тока можно снизить до 20 мкА.

Цепи защиты

часто включают в себя обнаружение перегрузки по току, а некоторые могут отключать навсегда (например, посредством внутреннего предохранителя), если батарея сильно разряжена.Многие используют плавкие предохранители с самовозвратом (например, устройства Polyswitch), или перегрузка обнаруживается электронным способом, и батарея отключается только на время существования неисправности. Существует много подходов, но важно знать, что некоторые внешние события (например, статический разряд) могут вывести цепь (и) из строя. С литиевыми батареями следует обращаться осторожно — всегда.

Рисунок 5 — Схема приложения SII S-8253D

На приведенном выше рисунке показана схема защиты трехэлементной литиевой батареи.Он не уравновешивает ячейки, но обнаруживает, превышает ли какая-либо ячейка в пакете порог «перезарядки», и прекращает зарядку. Он также остановит разряд, если напряжение на любой ячейке упадет ниже минимального. Переключение контролируется внешними полевыми МОП-транзисторами, и зарядное устройство должно быть настроено на правильное напряжение (12,6 В для показанной трехэлементной схемы с учетом литий-ионных элементов).

Эти ИС (и другие от различных производителей) довольно часто встречаются в азиатских платах BMS. Таблицы данных обычно не очень дружелюбны, и в некоторых случаях предоставляется обширный объем информации, но мало в виде схем приложений.Это кажется обычным для многих из этих микросхем других производителей — предполагается, что пользователь хорошо знаком со схемами балансировки батарей, что не всегда так. Показанный S-8253 имеет типичный ток потребления 14 мкА при работе, и его можно уменьшить почти до нуля, если использовать CTL (управляющий) вход для отключения ИС, когда аккумулятор не используется или не заряжается. Полевые МОП-транзисторы отключат вход / выход, если элемент заряжен или разряжен сверх пределов, определенных IC.


7 — Мониторинг состояния заряда (SOC)
«Уровнемеры» батареи

часто являются не более чем уловкой, но новые методы сделали науку несколько менее произвольной, чем это было раньше. Самый простой (и наименее полезный) — контролировать напряжение батареи, потому что литиевые батареи имеют довольно пологую кривую разряда. Это означает, что необходимо обнаруживать очень небольшие изменения напряжения, а напряжение является очень ненадежным индикатором состояния заряда. Контроль напряжения может быть приемлемым для легких нагрузок в ограниченном диапазоне температур.Он отслеживает саморазряд, но общая точность оставляет желать лучшего.

Так называемый «кулоновский счет» измеряет и регистрирует заряд, идущий в батарею , и энергию, потребляемую от батареи , и вычисляет вероятное состояние заряда в любой момент времени. Он не дает точных данных об аккумуляторе, который из-за возраста изнашивается, и не может учитывать саморазряд, кроме как путем моделирования. Системы счета кулонов должны быть инициализированы циклом «обучения», состоящим из полной зарядки и разрядки.Изменения, вызванные температурой, невозможно надежно определить.

Анализ импеданса

— это еще один метод, который потенциально является наиболее точным (по крайней мере, согласно Texas Instruments, которые производят ИС, которые выполняют анализ). Контролируя импеданс элемента (или аккумулятора), можно определить степень заряда независимо от возраста, саморазряда или текущей температуры. Компания TI называет свой метод анализа импеданса «Impedance Track ™» (сокращенно IT) и делает несколько довольно смелых заявлений о его точности.Я не могу комментировать так или иначе, потому что у меня нет батареи, использующей его, и у меня нет средств для запуска тестов, но это кажется многообещающим из информации, которую я видел до сих пор.

Эта статья посвящена правильному контролю заряда и разряда, а не контролю состояния заряда. Последнее удобно для конечного пользователя, но не является важной частью процесса зарядки или разрядки. Я не планирую предоставлять дополнительную информацию о «датчиках уровня топлива» в целом, независимо от технологии.


8 — Проекты с батарейным питанием

Ячейка 18650 (диаметр 18 мм и длина 65 мм) стала очень популярной для многих портативных устройств, и теперь они легко доступны по довольно разумным ценам.Конечно, не все они равны, и многие онлайн-продавцы выдвигают довольно диковинные заявления о емкости. Подлинные элементы 18650 имеют типичную емкость от 1500 мА / ч (миллиампер-час) до 3500 мА / ч, но подделки часто сильно завышают оценки. Я видел, как они рекламировались как имеющие мощность до 6000 мА / ч, что просто невозможно. Максимальное значение, которое я видел, составляет 9 900 мА / ч, и это даже на больше невозможно, но, похоже, никого не волнует, что покупателей вводят в заблуждение.

Ячейка 18650 является опорой для многих аккумуляторных блоков ноутбуков, при этом 6-элементная батарея является довольно распространенной.Они могут быть подключены последовательно / параллельно для обеспечения удвоенной емкости (в мА / ч) при 11,1 вольт. Батарейный отсек содержит схемы балансировки и защиты, и элементы не подлежат замене. Это (ИМО) позор, потому что всегда будет дешевле заменить элементы, а не весь герметичный аккумулятор. Тем не менее, элементы в этих пакетах, как правило, относятся к типу «с выступами», с металлическими язычками, приваренными к элементам, поэтому они не зависят от физического контакта для создания электрического соединения.Это означает, что сделать их «заменяемыми пользователем» невозможно.

Одним из преимуществ использования отдельных ячеек является то, что многих проблем, поднятых в этой статье, можно избежать, по крайней мере, до некоторой степени. Будучи отдельными элементами, они обычно используются в пластиковом «батарейном блоке», обычно соединенном последовательно. Набор из четырех может обеспечить номинальное напряжение ± 7,4 В (каждая ячейка — 3,7 В), и этого достаточно для работы многих схем операционных усилителей, включая микрофонные предусилители, испытательное оборудование и многие другие.Зарядка проста — выньте элементы из аккумуляторной батареи и заряжайте их параллельно с помощью специального зарядного устройства Li-Ion. При условии, что зарядное устройство использует правильное напряжение на клеммах (не более 4,2 В, желательно немного меньше) и ограничивает пиковый ток зарядки в соответствии с используемыми элементами, зарядка безопасна и балансировка не требуется.

Как и во всем, есть предостережения. Цепи, на которые подается питание, нуждаются в дополнительных схемах для отключения аккумуляторной батареи при достижении минимального напряжения.Обычно это 2,5 В на элемент, поэтому автомат должен достаточно точно определять это и отключать аккумулятор, когда напряжение достигает минимума. Однако, если вы используете «защищенные» элементы, у них есть небольшая печатная плата внутри корпуса элемента, которая отключит питание, если элемент закорочен, он (обычно) предотвращает перезарядку и (обычно) имеет выключатель пониженного напряжения.

Но есть загвоздка! Хотя они по-прежнему используют то же обозначение размера (18650), многие защищенные ячейки немного длиннее. Некоторые из них могут быть длиной до 70 мм, и они не помещаются в аккумуляторные отсеки, предназначенные для «настоящих» ячеек 18650.Другие имеют правильную длину, но имеют меньшую емкость, потому что сама ячейка немного меньше, поэтому схема защиты подойдет. Эти ячейки также различаются положительным концом окончания — некоторые используют «кнопку» (почти такую ​​же, как у большинства щелочных ячеек), в то время как другие имеют плоскую вершину. Часто они не взаимозаменяемы.

Чтобы сбить с толку вопрос, есть также литиевые элементы размера AA (14500 — 14 мм в диаметре и 50 мм в длину). Поскольку это элементы с напряжением 3,7 В, это элементы , а не «AA», даже если они имеют одинаковый размер.Вы также можете купить «фиктивные» элементы AA, которые представляют собой не что иное, как оболочку размера AA (с оберткой, как у «настоящих» элементов), которая обеспечивает короткое замыкание. Они используются вместе с литий-ионными элементами в устройствах, предназначенных для использования двух или четырех элементов. Используются один или два Li-Ion и один или два фиктивных элемента, и большинство устройств вполне довольны результатом. Моя «рабочая лошадка» оснащена парой литий-ионных аккумуляторов размера AA и парой манекенов, и обычно ее нужно заряжать только каждые несколько недель (или даже до пары месяцев, если она мало используется).Нет абсолютно никакого сравнения между Li-Ion и NiMh-элементами, которые я использовал ранее.


Существует несколько способов безопасного использования более «традиционных» литий-ионных аккумуляторов. В проекте, над которым я работал некоторое время назад, использовался литий-ионный аккумулятор 3S (три последовательных элемента) с номинальным напряжением 11,1 В. Он был установлен в корпусе вместе с электроникой, поэтому снимать его для зарядки было нецелесообразно. Вместе с аккумулятором было установлено небольшое балансировочное зарядное устройство, уравновешивающие клеммы которого подключены через реле.Это было необходимо, потому что в противном случае балансировочные цепи разрядили бы аккумулятор. Стоимость зарядного устройства для баланса была такой, что было бы неразумно пытаться построить его за такие же деньги. Даже получить необходимые детали может быть непросто!

При добавлении реле и балансировочного зарядного устройства в систему необходимо было только подключить внешний источник питания (12 В) к стандартной розетке постоянного тока на задней панели, и это включило бы реле и зарядило аккумулятор. Реле отключились, как только отключился внешний источник напряжения.Это сделало потенциально утомительную задачу (подключение зарядного устройства и балансировочного разъема) к тому, с чем «средний» пользователь мог бы легко справиться. Те, кто использует устройство, обычно (определенно) не являются техническими специалистами, и ожидать, что они возятся с неудобными разъемами, было не вариант. Фотография используемого мною аранжировки показана ниже. Обычно используемый аккумулятор был рассчитан на 1500 мА / ч и мог поддерживать непрерывную работу системы регистрации данных в течение 24 часов. Зарядное устройство можно было подключить или вынуть во время работы системы.

Рисунок 6 — Система зарядки литий-ионных аккумуляторов 3S

Балансировочное зарядное устройство разработано специально для аккумуляторов 2S и 3S и стоит менее 10 долларов США у онлайн-поставщика различных аккумуляторов для хобби, зарядных устройств и т.д. питание отключено. Без используемой схемы отключения реле балансные цепи разрядили бы аккумулятор за пару дней. Схема, питаемая от показанной системы, имела встроенный датчик напряжения, который был разработан, чтобы выключить все, когда общее напряжение питания упало примерно до 8 вольт.Плавкий предохранитель (½A) был включен в линию с выходом постоянного тока в качестве окончательной системы защиты, чтобы избежать катастрофического отказа силовой схемы.

На фото вы видите плату зарядного устройства баланса, установленную над платой реле и разъема. Светодиоды были выдвинуты так, чтобы они выглядывали через заднюю панель, а входной разъем постоянного тока находится слева. Сильноточные выводы от батареи в этом приложении не используются, потому что потребляемый ток намного ниже максимальной скорости разряда.Два реле видны справа, и только три балансных клеммы отключены, когда внешний источник постоянного тока отсутствует. Балансировочное зарядное устройство выглядит очень скудным, но на нижней стороне платы у него есть несколько SMD-микросхем и других деталей.

Рисунок 7 — Схема системы зарядки литий-ионных аккумуляторов 3S

На принципиальной схеме показано, как подключена система. Это легко сделать любому, кто думает об использовании подобного устройства, и небольшой кусок Veroboard легко соединяется с реле и диодами.Диод показан параллельно катушкам реле, и это необходимо для того, чтобы обратная ЭДС не повредила схему зарядного устройства при отключении входа 12 В. D1 должен выдерживать полный входной ток зарядного устройства, который в данном примере составляет менее 1 А. Вся сложность в балансировочном зарядном устройстве — все остальное максимально просто. D1 предотвращает обратную передачу напряжения батареи от зарядного устройства, поэтому реле будут активированы только при наличии внешнего источника питания.Предохранитель следует выбирать в соответствии с нагрузкой. Эта схема подходит только для слаботочных нагрузок, поскольку в ней не используются сильноточные выводы батареи.

Это только одно из многих возможных приложений, и, как описано выше, иногда проще использовать стандартное зарядное устройство, чем собрать его с нуля. С другими приложениями у вас может не быть выбора, потому что «лучшие» зарядные устройства могут стать довольно дорогими и могут оказаться непригодными для повторного использования указанным способом. Для единичных или небольших производственных циклов использование того, что вы можете получить, обычно более рентабельно, но это меняется, если должно быть изготовлено большое количество единиц.


Выводы

Литиевые элементы и батареи — это современный «современный уровень техники» в технологиях хранения. За прошедшие годы усовершенствования сделали их намного безопаснее, чем ранние версии, и справедливо сказать, что разработка ИС является одним из основных достижений, поскольку существует ИС (или семейство ИС), предназначенное для мониторинга и контроля процесса зарядки и ограничения напряжения, приложенные к каждой ячейке в батарее. Этот процесс снизил риск повреждения (и / или возгорания), вызванного перезарядкой, и продлил срок службы литиевых батарей.

На самом деле ни один состав батареи не может считаться на 100% безопасным. Ni-Mh и Ni-Cd (никель-металл-гидридные и никель-кадмиевые) элементы не будут гореть, но они могут вызвать сильный ток при коротком замыкании, что вполне способно вызвать воспламенение изоляции на проводах, воспламенение печатных плат и т. Д. токсичен, поэтому утилизация регулируется. Свинцово-кислотные батареи могут (и взрываются) взорваться, заливая все вокруг серной кислотой. Они также способны создавать огромный выходной ток и выделять взрывоопасную смесь водорода и кислорода при перезарядке.Когда вам нужна высокая плотность энергии, альтернативы литию нет, и при правильном обращении риск на самом деле очень низок. Хорошо сделанные элементы и батареи будут иметь все необходимые гарантии от катастрофического отказа.

Это не означает, что литиевые батареи всегда будут безопасными, что было доказано множеством отказов и отзывов по всему миру. Однако следует учитывать огромное количество используемых литиевых элементов и батарей. Каждый современный мобильный телефон, ноутбук и планшет использует их, и они распространены во многих моделях товаров для хобби и большинстве новых фотоаппаратов — и это лишь небольшой образец.В модельных самолетах используются литиевые батареи, потому что они имеют такую ​​хорошую плотность энергии и малый вес, а многие из последних модных моделей (например, дронов / квадрокоптеров) были бы непригодны для использования без литиевых батарей. Попробуйте оторваться от земли со свинцово-кислотным аккумулятором на борту!

Обычно рекомендуется избегать дешевых азиатских безымянных литиевых элементов и батарей. Хотя какой-то может быть совершенно нормальным, у вас нет реального возмещения, если кто-то сожжет ваш дом дотла.Мало надежды на то, что жалоба на веб-сайт онлайн-аукциона приведет к финансовому урегулированию, хотя это в равной степени может относиться к товарам известных брендов, купленным в обычных магазинах. Поскольку в большинстве инструкций (часто непрочитанных и регулярно игнорируемых) говорится, что литиевые батареи нельзя заряжать без присмотра, это сложный аргумент. Однако, если учесть количество используемых литиевых батарей, отказы на самом деле случаются очень редко. К сожалению, когда происходит сбой и происходит , результаты могут быть плачевными.Вероятно, не помогает то, что СМИ поднимают большой шум каждый раз, когда литиевый аккумулятор демонстрирует потенциальную неисправность — очевидно, это достойно новостей.

Одно можно сказать наверняка — эти батареи должны быть заряжены должным образом, с соблюдением всех необходимых мер предосторожности против перенапряжения (полная балансировка элементов). Никогда не заряжайте аккумуляторы, если температура равна или ниже 0 ° C, а также если она превышает 35-40 ° C. Литий становится нестабильным при 150 ° C, поэтому необходим тщательный контроль температуры элементов, если вы должны заряжать при высоких температурах, и в идеале он должен быть частью зарядного устройства.Избегайте использования литиевых элементов и батарей там, где их корпус может быть поврежден или они могут подвергаться воздействию высоких температур (например, прямых солнечных лучей), так как это повышает внутреннюю температуру и резко снижает надежность, безопасность и срок службы батареи.

Как должно быть очевидно, один литиевый элемент довольно легко зарядить. Вы можете использовать специальную ИС, но даже гораздо более простая комбинация регулятора 4,2 В и последовательного резистора подойдет для базового (медленного) зарядного устройства. Зарядные устройства с одной ячейкой (или несколькими параллельными ячейками) можно приобрести довольно дешево, а те, которые я использовал, работают хорошо и представляют очень небольшой риск.Даже в этом случае я никогда не выйду из дома, пока литиевая батарея или элемент находятся на зарядке. У меня никогда не было проблем с и с литий-ионными батареями или элементами, и я использую довольно много из них для различных целей. Это не считая самых распространенных — телефонов, планшетов и ноутбуков. Литий-ионная химия оказалась гораздо более надежным вариантом по сравнению с Ni-Mh (металлогидридом никеля), где мне недавно пришлось утилизировать (как в переработчике, а не в цикле самих элементов) более половины из тех, что у меня были!

Когда вам нужно много энергии в небольшом, легком корпусе с возможностью перезарядки до 500-1000 раз, нет лучшего материала, чем литий.Если к ним относятся с уважением и не злоупотребляют, обычно можно ожидать долгих и счастливых отношений со своими элементами и батареями. Они не идеальны, но они определенно превосходят большинство других химикатов с большим отрывом. О LiFePO 4 (широко известных как просто LFP, LiFePO или LiFe) можно много сказать, потому что они используют более стабильный химический состав и с меньшей вероятностью сделают что-нибудь «неприятное». Однако до тех пор, пока ими не злоупотребляют, литий-ионные элементы и батареи способны прожить безопасную, долгую и счастливую жизнь.

Информацию о схеме отключения аккумулятора, которая полностью отключает аккумулятор при падении напряжения до заданного предела, см. В проекте 184. Это было разработано специально для предотвращения чрезмерной чрезмерной разрядки, если оборудование с аккумуляторным питанием случайно остается включенным после использования.


Список литературы

  1. Литий — Википедия
  2. Почему загораются литиевые батареи
  3. Зарядка литий-ионных батарей
  4. Расчет литиевых батарей (FedEx)
  5. UPS расширяет зоны обслуживания опасных грузов — вам необходимо выполнить поиск по сайту
  6. SII S8253 Лист данных (Seiko)
  7. Вопросы безопасности литий-ионных аккумуляторов


Основной индекс

Указатель статей

Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2016. Воспроизведение или переиздание любыми способами, электронными, механическими или электромеханическими, строго запрещено. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и авторские права © ноябрь 2016 г., опубликовано в феврале 2017 г. / Обновлено в сентябре 2018 г. — только небольшие изменения. / Октябрь 2018 г. — добавлен раздел 8.

уроков по безопасности Li-Ion | Hackaday

Если вы пришли сюда из поиска в Интернете, потому что ваша батарея только что взорвалась, и вы не знаете, как потушить пожар, то используйте обычный огнетушитель, если он подключен к розетке, или огнетушитель или воду, если он не подключен. Убирайтесь, если много дыма.Для всех остальных продолжайте читать.

Недавно я разработал продукт, в котором использовались три ячейки 18650. Этот аккумуляторный блок имел собственную схему защиты от перенапряжения, пониженного напряжения и перегрузки по току. Вдобавок к этому моя конструкция включала предохранитель PTC, и вдобавок ко всему у меня была цепь измерения тока, контролируемая микроконтроллером, который управлял платой. Когда дело доходит до литий-ионных аккумуляторов, не стоит возиться с ними. Они несут в себе много энергии, и если что-то пойдет не так, они могут испытать тепловой разгон, что является другим словом для взрыва и распространения огня и токсичных газов по всему телу.Итак, как вы заботитесь о них и что вы делаете, когда дела идут плохо?

Серьезность ситуации

Это видео было снято 20 октября 2019 года в Шаньтоу, Китай, и показывает, как заряжаемый электросамокат подвергается быстрой внеплановой разборке. Поиграйте со звуком, но, возможно, немного приглушите. Обратите внимание также на огнетушитель в правом нижнем углу, как будто это не было неожиданным событием.

Происходит тепловой разгон, когда аккумулятор становится слишком горячим и начинает самоуничтожаться, воспламеняя электролит, который затем выделяет энергию, выделяя больше тепла, что вызывает большее саморазрушение соседних элементов.Это может произойти по-разному:

  • Короткое замыкание: Либо из-за повреждения от удара или прокола, как с ножом, если слои теряют свое разделение, создается короткое замыкание, позволяющее большому количеству энергии перемещаться очень быстро и генерировать много тепла в процесс. Кроме того, батареи могут со временем образовывать дендриты, острые кристаллы, похожие на сталактиты в пещерах, которые могут пробить разделительный слой и вызвать внутреннее замыкание.
  • Перезаряд: Когда аккумулятор заряжается выше максимального напряжения, он может выделять тепло.
  • Чрезмерный ток: во время зарядки или разрядки.

Все три — от большого количества энергии, движущейся очень быстро и выделяющей слишком много тепла. Если вас интересует, что именно происходит внутри литиевых элементов, мы уже обсуждали это более подробно в прошлом. Но, даже не разбираясь в химическом составе, мы наблюдаем последствия значительных событий, например, когда несколько лет назад вышедшие из строя батареи Note 7 вызвали проблемы и привели к изменениям в политике авиакомпаний в отношении определенных устройств.

Помимо угрозы пожара, во время этого молнии выделяются токсичные газы. Клетки содержат некоторое количество фтора, который реагирует с образованием фтороводорода в значительных количествах, что делает дым от события непосредственной опасностью для жизни или здоровья, особенно в замкнутых пространствах.

Меры предосторожности: вентиляция, защита ячеек и мониторинг

Электромобили со все большей скоростью сходят с конвейеров и в гаражи. Энергетический потенциал каждого транспортного средства огромен, и в области химии литий-ионных аккумуляторов проводится много исследований, направленных на значительное увеличение срока службы и целостности элементов.Также было проведено множество исследований того, на каком уровне заряжать и хранить аккумулятор. Его не следует заряжать до 100% все время, при длительном хранении рекомендуется зарядка на 50-70%.

Зная, КАК батареи взрываются, мы можем сделать некоторые вещи, чтобы их отпугнуть, и спроектировать это в элементах и ​​батареях. На уровне ячейки первая защита находится в самом сепараторе, который не позволяет аноду и катоду касаться друг друга. Этот изолирующий слой спроектирован так, чтобы быть достаточно пористым, чтобы поглощать электролит и пропускать ионы лития, а при накоплении тепла он может даже закрывать поры для остановки передачи.Но его основная задача — поддерживать мир между анодом и катодом.

Помимо химии, ячейка обычно покрыта некоторыми защитными слоями, которые могут быть металлическим мешком для точно названных мешочков или металлическим контейнером для цилиндрических ячеек. Оба стараются избегать проколов и содержат газы, которые могут образоваться. Им может потребоваться выпустить этот газ, если создается слишком большое давление, поэтому кожухи должны иметь возможность немного расширяться, чтобы разместить разбухающую батарею, и обеспечивать безопасный выход газа, если он действительно создает достаточное давление.Если газ не выходит, он может взорваться. Так или иначе, выходит.

Схема защиты литий-ионного аккумулятора своими руками.

Еще одна мера предосторожности — схема защиты, которая может быть применена к отдельным ячейкам для большей безопасности или к нескольким ячейкам, если они сбалансированы. Пару лет назад мы рассмотрели устройство для защиты клеток, сделанное своими руками. Эти схемы могут контролировать температуру, ток и напряжение и отключать элемент, если какой-либо из них выходит за пределы безопасного диапазона. В большинство аккумуляторных блоков по умолчанию встроены эти схемы; вам нужно будет указать чистый незащищенный пакет, если он вам действительно нужен.

За пределами самого блока, как правило, целесообразно иметь дополнительную схему защиты, которая может предотвратить попадание блока в момент, когда он должен отключиться. Если устройство может обнаружить проблему до того, как блок отключит питание, оно может исправить ее и по-прежнему предоставить пользователю интерфейс и корректно завершить работу. В этом может помочь мониторинг тока, температуры и напряжения на основной плате.

Обращайтесь с ними осторожно и знайте, как избавиться от них

Естественно, их нельзя использовать или хранить таким образом, чтобы они не подвергались воздействию высоких температур.Их следует защищать от ударов, особенно резких токопроводящих ударов. Их следует заряжать осторожно и под наблюдением с помощью надежного зарядного устройства. Для больших пакетов их, вероятно, не должно быть даже внутри дома во время зарядки в случаях, точно таких же, как на видео выше. Надутые пакеты больше не являются безопасными, и их следует утилизировать. Старые батареи, которые больше не работают, могут быть опасными.

Вот что происходит, когда порежется сумка-аккумулятор. Это крайний пример; даже надрезание ножом может повредить разделительный слой, что в конечном итоге может привести к соприкосновению анода и катода и вызвать внутреннее короткое замыкание.В этом видео они просто сильно ускоряют этот процесс и при этом выделяют токсичные пары.

Утилизировать литий-ионные аккумуляторы несложно, но большинство людей поступают не так, как должны. Аккумулятор следует отделить от остальной части устройства максимально безопасным способом. (Вставьте электроинструмент, но не аккумулятор, но не ломайте телефон пополам, пытаясь извлечь аккумулятор.) Затем провода следует закрепить лентой, чтобы они не касались друг друга или не замыкались на другом проводе.Принесите их в место, где их можно утилизировать, например, во многие магазины товаров для дома или переработчики электроники. Выбрасывать их в мусор может быть очень плохо из-за возможности того, что уплотнители для мусора и другие процессы могут повредить их и вызвать возгорание мусора. Кроме того, мы хотим, чтобы все вредные химические вещества не попадали на свалки.

Действия в аварийных ситуациях с литий-ионными аккумуляторами

Здесь есть противоречивые мысли. С одной стороны, ваша безопасность и безопасность окружающих имеют первостепенное значение, а газы, выделяемые горящим пакетом, опасны и, возможно, токсичны, особенно в замкнутых помещениях.Если дела идут плохо, вы должны выйти и предупредить других и власти. С другой стороны, вы не хотите терять все, если у вас есть шанс драться, быстрые действия могут разрешить ситуацию, и вы можете принимать свои собственные решения, или, может быть, вы находитесь в самолете и можете » т действительно сбежать.

Возгорание литий-ионной батареи

может относиться к классу возгорания A, B или C. Они горят сами по себе, сделаны из горючих материалов и содержат легковоспламеняющиеся жидкости и растворители. Когда они задействуют электрическое оборудование под напряжением (зарядное устройство), они достигают класса C.Если что-то подключено к стене, вы не хотите использовать воду, так как это только делает электрический пожар более опасным. Тем не менее, для одних только пакетов и без внешнего питания вода является эффективным решением. Он тушит огонь и снижает температуру упаковки, так что она не может повторно воспламениться. Любой огнетушитель должен работать, чтобы тушить огонь, но пока температура остается выше точки воспламенения электролита, он может перезапуститься, возможно, через несколько часов, а в случае электромобилей — через несколько дней.

Вы можете спросить, почему это не пожар класса D, то есть пожар горючего металла. Если бы мы говорили о первичных литиевых батареях, не перезаряжаемых, то это был бы пожар класса D, требующий сухого порошкового огнетушителя (или тушение в песке или другом негорючем материале, кроме воды). Но количество лития в литий-ионной батарее на самом деле недостаточно велико или недостаточно сконцентрировано, и оно никогда не достигает точки, когда сам литий воспламеняется.

В случаях, когда вы обеспокоены тем, что батарея может находиться в опасном состоянии, лучший способ справиться с ней — сначала бросить ее в контейнер, а затем вынести контейнер на улицу в безопасное место, где затем вы сможете поработать над тушением. любой пожар, который развивается без угрозы для вас или каких-либо зданий.

Упомянутое ранее видео с поджогом электрического велосипеда демонстрирует удивительно хорошую реакцию. Человек сначала отключает батарею, давая ему больше возможностей и снижая вероятность обострения пожара. Вы можете видеть, как они хватаются за огнетушитель при отступлении, вероятно, чтобы вооружить его в безопасности. Затем они возвращаются и тушат огонь. Он снова воспламеняется, и они снова попадают в него. Кто-то открывает дверь, чтобы проветрить и удалить дым.

После этого они должны вынести байк и себя на улицу, где нет горючих материалов, а упаковка может выпустить оставшиеся пары.Они должны проветривать входную зону, не проводя в ней много времени. И им следует замочить аккумулятор на длительное время в воде, чтобы он остыл.

В этом документе можно найти гораздо более подробное руководство по опасностям возгорания литий-ионных аккумуляторов и стратегиям безопасности. Поскольку мы продолжаем окружать себя устройствами с питанием от литиевых батарей, понимание лечения, предупреждающих знаков и соответствующая реакция — это хорошая идея для всех.

Литий-ионный аккумулятор

Литий-ионный »Электроника

Литий-ионные, литий-ионные аккумуляторы в настоящее время широко используются во многих сферах электронного оборудования, а также в электромобилях, электроинструментах и ​​т. Д.


Литий-ионный аккумулятор Включает:
Литий-ионная технология
Типы литий-ионных аккумуляторов
Литий-полимерный аккумулятор
Литий-ионная зарядка
Литий-ионные преимущества и недостатки

Аккумуляторная технология включает:
Обзор аккумуляторной технологии
Определения и термины батареи
NiCad
NiMH
Литий-ионный
Свинцово-кислотный


Литий-ионные батареи обеспечивают повышенный уровень емкости в сочетании с надежной работой по сравнению с другими формами элементов и аккумуляторных технологий, включая никель-кадмиевые, никель-кадмиевые и никель-металлогидридные, NiMH.

Литий-ионные или литий-ионные аккумуляторы благодаря своим характеристикам стали предпочтительной аккумуляторной технологией во многих областях. Литий-ионные аккумуляторы используются почти исключительно в мобильных телефонах, ноутбуках, электронных книгах и многих других электронных устройствах. В дополнение к этому, литий-ионная технология также используется для приложений питания — от мельчайших электронных гаджетов до мобильных телефонов, ноутбуков и т. Д. До электроинструментов, и есть даже литий-ионные автомобильные аккумуляторы для питания электромобилей.

С ростом использования мобильных и портативных источников энергии использование литий-ионных технологий будет еще больше расти.

Стоит отметить, что литий-ионные элементы и батареи перезаряжаемые, и они отличаются от литиевых батарей или элементов, которые являются первичными, а не перезаряжаемыми.

Рост и развитие литий-ионных батарей

Понимание того, как была разработана литий-ионная батарея, дает общее представление о ее работе, а также полезно увидеть, как она развивалась и как она может развиваться в будущем.

На разработку литиевых батарей

потребовалось много лет. Он предлагает явные преимущества по сравнению с другими более старыми технологиями перезаряжаемых аккумуляторов, такими как никель-кадмиевые и никель-металлогидридные. Несмотря на преимущества литий-ионных аккумуляторов, потребовались годы, чтобы довести их до совершенства и достичь такого уровня зрелости, при котором его можно было бы широко использовать. Теперь он используется во многих областях, и его использование позволило многим технологиям, таким как мобильные телефоны, ноутбуки и другие предметы повседневного использования, двигаться вперед.

Идея технологии литий-ионных аккумуляторов была впервые предложена в 1970-х годах М. Уиттингемом, который использовал сульфид титана в качестве катода и металлический литий для анода.Хотя элемент вырабатывал энергию, она могла быть нестабильной, так как усы лития из анода врастали в электролит и в конечном итоге касались катода.

В Пенсильванском университете были предприняты работы по использованию графитового электрода с ионами лития в электроде. Это было большим достижением, хотя другие достижения в области ионно-литиевой технологии не сразу начали его использовать.

Однако другие методы, связанные с зарядкой, должны были быть решены, прежде чем можно было сделать жизнеспособный элемент.В 1979 году Дж. Гуденаф продемонстрировал перезаряжаемый ионно-литиевый элемент, в котором в качестве положительного электрода использовался оксид лития-кобальта, а в качестве отрицательного — литий.

Следующими этапами создания работоспособной производственной ячейки была возможность перезарядки литием в графите. Это было достигнуто Рашидом Язами в 1979 году. Затем потребовалось время до 1985 года, прежде чем был разработан перезаряжаемый литий-ионный элемент, который можно было производить в больших количествах. Акира Йошино использовал углеродистый материал, в который в качестве одного электрода входили ионы лития, а в качестве другого — оксид лития-кобальта LiCoO2.Использование оксида лития-кобальта было важным, потому что он стабилен на воздухе в отличие от самого лития, и это сделало эту структуру ячейки более стабильной химически и гораздо менее опасной.

Литий-ионные, литий-ионные аккумуляторы, основы технологии

Несмотря на то, что существует множество различных форм литий-ионных аккумуляторов, есть несколько общих элементов.

Литий-ионный аккумулятор или элемент любой формы состоит из четырех основных компонентов:

  • Катод: Это положительный электрод, и он обычно изготавливается из оксида металла на основе лития той или иной формы.Существует несколько различных технологий литий-ионных аккумуляторов, поэтому точный формат будет меняться от одного типа к другому.

  • Анод: Это отрицательный электрод литий-ионной батареи, и он обычно изготавливается из углерода, обычно в форме графита.

  • Электролит: Электролит расположен между двумя электродами внутри ячейки. Часто это смесь органических карбонатов, таких как этиленкарбонат, диэтилкарбонат и т. Д.

  • Разделитель: Чтобы два электрода не соприкасались, между анодом и катодом размещен разделитель. Это поглощает электролит и обеспечивает прохождение ионов, но предотвращает прямой контакт двух электродов внутри литиевой ячейки.

Базовая структура элемента литиево-ионной батареи

В течение всего цикла с перемещением ионов лития связаны два процесса:

  • Интеркаляция: Процесс, при котором ионы лития в литий-ионной батарее вставляются в электрод, называется интеркаляцией.
  • Деинтеркаляция: Это обратный процесс, который происходит, когда ионы лития извлекаются из электрода, т.е. они движутся обратно.

Чтобы дать более подробное объяснение, во время разряда литий-ионного элемента, когда он подает ток во внешнюю цепь, на аноде происходит реакция окисления. Это производит ионы лития и свободные электроны, а ионы лития проходят через электролит к катоду — электроны проходят через внешнюю цепь.Затем они рекомбинируют на катоде в противоположность реакции окисления, то есть реакции восстановления.

Таким образом, химическая энергия, хранящаяся в литий-ионном элементе, преобразуется в электрическую энергию, которая может использоваться в электрических и электронных схемах.

Во время цикла зарядки реакции протекают в обратном направлении: ионы лития проходят от катода через электролит к аноду. Электроны, поступающие из внешней цепи, затем объединяются с ионами лития, чтобы обеспечить накопленную электрическую энергию.

Следует помнить, что процесс зарядки не является полностью эффективным — некоторая энергия теряется в виде тепла, хотя обычно уровень эффективности составляет около 95% или чуть меньше.

Управление литий-ионной батареей

Литий-ионные батареи

необходимо эксплуатировать в относительно строгих пределах. Им не нравится быть чрезмерно заряженным, полностью разряженным, подвергаться коротким замыканиям и т.п.

Литиевые батареи

всегда работают в паре с системой управления батареями.Он отслеживает уровень заряда, температуру, напряжение и ряд других факторов.

Система управления литиевой батареей управляет зарядкой и разрядкой, отмечает уровень заряда, отключает аккумулятор от подачи большего количества заряда, когда он почти разряжен (они не любят, когда он полностью разряжен), управляет циклом зарядки и применяет требуемый формат для заряжать во время зарядки, так как обычно используются два или более режима. Он также прекращает заряд, когда батарея или элемент полностью заряжены.Функция управления также обеспечивает защиту от короткого замыкания и перегрева.

Соответственно, система управления батареями является неотъемлемой частью любой системы литий-ионных батарей.

Варианты литий-ионных батарей

Хотя литий-ионные аккумуляторы обычно называют их общим названием, на самом деле существует несколько различных типов литий-ионных аккумуляторов.

Типичный ионно-литиевый аккумулятор, используемый для питания электроинструмента.

Различные типы ионно-литиевых аккумуляторов имеют очень похожие характеристики, но каждый со своими уникальными характеристиками.Соответственно, разные типы используются в разных приложениях.

Обзор технологий литий-ионных батарей
Имя Составляющие Сокращение Основные характеристики Приложения
Литий-кобальт LiCoO2 LCO Высокая производительность Мобильные телефоны, ноутбуки, фотоаппараты
Литий оксид марганца LiMn2O4 LMO Меньшая емкость Электроинструменты медицинские, для любителей
Литий-фосфат железа LiFePO4 LFP Меньшая емкость Электроинструменты медицинские, для любителей
Литий, никель, марганец, кобальт, оксид LiNiMnCoO2 NMC Меньшая емкость Электроинструменты медицинские, для любителей
Литий Никель Кобальт Оксид алюминия LiNiCoAlO2 NCA Электромобили и энергосистема хранения
Титанат лития Li4Ti5O12 LTO Электромобили и энергосистема хранения

Литий-полимерные батареи

Новая и интересная разработка для литиевых батарей — это литий-полимерный вариант.Хотя это не другая технология аккумуляторов, чем те, которые используют другие материалы анода и катода, в ней действительно используется другая форма электролита.

Используя этот другой электролит, батареи могут быть изготовлены в гораздо большем количестве форматов, даже если они гибкие.

В литиево-полимерной батарее могут использоваться те же материалы анода и катода, что и в других батареях, дающих аналогичные характеристики, но ее гораздо проще изготавливать в различных формах. Это делает его идеальным вариантом для производителей оборудования, которым требуются особые формы, соответствующие малым форм-факторам их конструкций электронного оборудования.

Форматы литий-ионных батарей

Литий-ионные элементы

могут быть изготовлены в различных формах, и, как и следовало ожидать, существует ряд принятых стандартных форматов. Это позволяет настраивать оборудование на большие партии элементов и батарей одинакового размера, тем самым снижая затраты.

Литий-ионные элементы и батареи

обычно не соответствуют форматам AAA, AA, C и D, используемым для многих первичных элементов, а также для никель-кадмиевых, Ni-Cd или никель-металлогидридных, NiMH элементов.Вместо этого они используют разные форматы.

Очевидно, что для разных приложений существуют разные форматы, но в основном используются одни и те же принципы.

  • Малые цилиндрические элементы: Цилиндрический формат используется во множестве приложений, и часто батареи состоят из серии этих элементов. Типичные размеры 18 × 65 мм, 21 × 50 мм и 26 × 65 мм.

  • Большой силовой цилиндрический: Во многих отношениях это большая версия цилиндрического типа меньшего размера, но обычно с большими винтовыми клеммами для обеспечения эффективной передачи тока с низким сопротивлением.

  • Формат пакета: Аккумулятор, известный как «пакет», представляет собой плоский пакет из фольги, который можно сравнить с упаковками жевательной резинки. Этот формат обычно используется для литий-полимерных элементов и аккумуляторов, так как их легко изготовить для определенных форм, что позволяет производителям электронных устройств и оборудования иметь аккумуляторы определенной формы для заполнения доступного пространства.

  • Призматический: Этот формат обычно представляет собой батарею плоской или прямоугольной формы, часто используемую для питания электронных устройств и т.п.Типичными размерами являются 5 × 34 × 50 мм и 10 × 34 × 50 мм, хотя, как и в других стилях, также доступны размеры, определенные поставщиком, и другие, которые изготавливаются на заказ.

  • Большой жесткий пластиковый футляр: Эти большие жесткие футляры обычно используются для более крупного электрического оборудования и транспортных средств.

Руководство по использованию литий-ионных аккумуляторов

Литий-ионные аккумуляторы или литий-ионные аккумуляторы

могут быть относительно дорогими. Поэтому стоит следовать простым рекомендациям, которые помогут обеспечить максимальный срок службы.

  • Не разряжать полностью: Литий-ионные аккумуляторы необходимо зарядить до полной разрядки. Это, вероятно, самый важный фактор в общем использовании. Оставление их полностью разряженным значительно сокращает их жизнь. Например, часто рекомендуется заряжать смартфоны (в которых используются литий-ионные аккумуляторы), когда они достигают 10-20% заряда. Кроме того, литий-ионные аккумуляторы никогда не должны разряжаться ниже минимального уровня 2.От 4 В до 3,0 В на элемент.
  • Уход при неиспользовании: Если литий-ионный аккумулятор не будет использоваться в течение длительного периода времени, в идеале его следует довести до уровня заряда примерно от 40% до 60% от полного заряда. В идеале его следует периодически заряжать, чтобы преодолеть последствия саморазряда (около 2% в месяц).
  • Хранить в прохладном месте: Литий-ионные аккумуляторы следует хранить в прохладном месте. Если держать их в прохладном месте, возможно, в холодильнике, процесс старения замедляется.По этой причине литий-ионные аккумуляторы не следует хранить в автомобилях в солнечные дни, так как температура значительно повышается.
  • Не замораживать: Литий-ионные аккумуляторы не должны подвергаться очень низким температурам — большинство электролитов литий-ионных аккумуляторов замерзают примерно при -40 ° C. Это может помешать им работать в некоторых приложениях, где оборудование требует питания при экстремальных температурах.
  • Покупайте новые аккумуляторы только при необходимости: Литий-ионные аккумуляторы следует покупать только при необходимости, потому что процесс старения начинается сразу после изготовления аккумулятора.

Принятие некоторых мер предосторожности при их использовании позволяет продлить срок службы литий-ионной батареи. Несмотря на то, что существует максимальный срок службы, неправильное использование и уход значительно сократят его.

Литий-ионные батареи и элементы

в настоящее время являются одной из доминирующих используемых технологий, пришедших на смену более старым никель-кадмиевым батареям и никель-металлогидридным батареям NiMH.

Литий-ионные аккумуляторы

используются для питания множества различных предметов, от небольших наушников и наушников до мобильных телефонов, планшетов, ноутбуков и множества других электронных устройств и предметов.В аккумуляторных электроинструментах широко используются литий-ионные батареи, как и другие электрические устройства. Многие автомобили в настоящее время питаются от батарей, а литий-ионная технология обеспечивает гораздо лучшее соотношение мощности и веса, и, соответственно, они также широко используются в этой области.

В связи с тем, что в технологию литий-ионных аккумуляторов вкладывается огромное количество средств, уровни производительности будут расти, а вместе с этим — и их использование.

Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле

Вернуться в меню «Компоненты».. .

Вот что происходит, когда литий-ионные аккумуляторы сильно заряжены.

Литиевые аккумуляторы имеют высокую плотность энергии, поэтому они могут хранить много энергии в небольшом объеме. Но они могут дымиться, когда случаются плохие вещи. Недавно мы записали короткое видео, чтобы показать, что может случиться во время одной из этих неприятностей — перезарядки.


Чрезмерная зарядка может вызвать перегрев литиевой батареи. Большинство литиевых батарей содержат специальные схемы, предотвращающие эту проблему.В нашем видео показано несколько примеров таких схем. Две длинные узкие печатные платы типичны для того, что вы найдете внутри литиевого блока питания, который может находиться внутри портативного компьютера. В маленькой игрушечной аккумуляторной батарее тоже есть батарейка. Но для этой демонстрации мы удалили защитные цепи.

Для нашего теста мы подключили источник питания постоянного тока к литиевой батарее так же, как и зарядное устройство. Максимальное напряжение заряда для литиевых элементов обычно порядка 4.5 В, но мы подняли напряжение постоянного тока намного выше, чтобы показать, что происходит при перезарядке. Производители аккумуляторов также обычно указывают оптимальную скорость зарядки не более восьми десятых номинального тока, и, конечно же, мы игнорируем это.

Обычно литий-ионные аккумуляторы могут испытывать общее повышение температуры примерно на 9ºF при зарядке. Помните об этом, наблюдая за нашими перезарядками. Мы использовали точечный термометр, чтобы отслеживать температуру батареи по мере движения.

Наш первый аккумулятор был от аккумуляторной батареи портативного компьютера. Следует отметить, что литиевые батареи не заряжаются непрерывно, когда достигают полной емкости, как некоторые другие химические батареи. Это потому, что это приводит к образованию металлического лития в батарее. Что происходит с металлическим покрытием, так это то, что высокие токи заряда заставляют ионы лития накапливаться на поверхности анода, не поглощаясь самим анодом. Литий с покрытием может в конечном итоге привести к короткому замыканию между внутренними компонентами батареи.

И мы вроде как видели это с батареей ноутбука. Согласно нашему точечному термометру, самое горячее место на батарее находится рядом с анодом.

Также при длительной перезарядке материал катода батареи становится нестабильным и выделяет углекислый газ. Давление внутри ячейки повышается. В конце концов давление поднимается достаточно, чтобы лопнуть кожух батареи примерно до 500 фунтов на квадратный дюйм. В этот момент камера вентилируется, и из нее может выйти пламя.

В нашем эксперименте аккумулятор ноутбука сильно нагрелся и в конечном итоге вышел из строя.Пламени не было, но дыма было много.

Помните об этом для нашей второй батареи, маленькой аккумуляторной батареи, которая когда-то приводила в действие игрушку. У карманных батарей, очевидно, нет металлических корпусов, как у батарей для ноутбуков. Таким образом, уплотнение не может сломаться и сбросить давление при нагревании аккумулятора. С этой маленькой аккумуляторной батареей мы не получили длительного накопления углекислого газа, которое произошло в элементе ноутбука. Этот разошелся примерно через минуту, как вечеринка.

Нашим последним тестом была аккумуляторная сумка несколько большего размера, также изготовленная из игрушки. Этому потребовалось немного больше времени, чтобы нагреться и создать давление. Причина этих больших реакций в том, что литий очень реакционноспособен; он принадлежит к группе щелочных металлов.

Когда мы перезаряжаем аккумулятор таким образом, мы вызываем небольшую неисправность или повреждение очень тонких разделителей, которые разделяют элементы аккумулятора. Это приводит к внутреннему короткому замыканию и накоплению тепла.Накопление тепла в одном элементе может повлиять на другие, находящиеся поблизости, поэтому группы элементов в некоторых аккумуляторных батареях электромобилей хранятся в отдельных защитных отсеках.