Микросхема 34063api описание: Микросхема MC34063 схема включения | Практическая электроника

Микросхема MC34063 схема включения | Практическая электроника

MC34063 – универсальная микросхема для самых простых импульсных преобразователей. На ней без применения внешних переключающих транзисторов можно строить понижающие, повышающие и инвертирующие преобразователи. А это основные типы преобразователей, не имеющих гальванической развязки.

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Понять как работает микросхема проще всего по структурной схеме.
Разберем по пунктам:

  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

Производители этой микросхемы (например Texas Instruments) в своих datasheets пишут, что её работа основана на широтно-импульсной модуляции (PWM). Даже если и можно назвать то, что делает MC34063 ШИМом, то очень уж примитивным.

  • Самый главный недостаток MC34063 – отсутствие встроенного усилителя ошибки. Поэтому пульсации выходного напряжения получаются достаточно большими. И не просто так в рекомендациях по применению предлагается на выход преобразователя устанавливать дополнительный LC-фильтр.
  • Второй недостаток – не простое подключение внешнего МДП транзистора.

Мое же мнение, что если требуется низкий уровень пульсаций, либо большая мощность преобразователя, то лучше использовать другие микросхемы – с внутренним усилителем ошибки и с драйвером работающим с полевыми транзисторами.

MC34063 для нетребовательных к пульсациям и мощности применений!

MC34063 повышающий преобразователь

Например я данную микросхему использовал чтобы получить 12 В питание интерфейсного модуля от ноутбучного порта USB (5 В), таким образом интерфейсный модуль работал когда работал ноутбук ему не нужен был свой источник бесперебойного питания.
Также имеет смысл использовать микросхему для питания контакторов, которым нужно более высокое напряжение, чем другим частям схемы.
Хотя MC34063 выпускается давно, но возможность работы от 3 В, позволяет её использовать в стабилизаторах напряжения питающихся от литиевых аккумуляторов.
Рассмотрим пример повышающего преобразователя из документации. Эта схема рассчитана на входное напряжение 12 В, выходное — 28 В при токе 175мА.

  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.

В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

Третья схема используется реже двух первых, но не менее актуальна. Для точного измерения напряжений или усиления аудио сигналов часто требуется двуполярное питание, и МС34063 может помочь в получении отрицательных напряжений.
В документации приводиться схема позволяющая преобразовать напряжение 4,5 .. 6.0 В в отрицательное напряжение -12 В с током 100 мА.

  • C1 – 100 мкФ 10 В;
  • C2 – 1500 пФ;
  • C3 – 1000 мкФ 16 В;
  • DA1 – MC34063A;
  • L1 – 88 мкГн;
  • R1 – 0,24 Ом;
  • R2 – 8,2 кОм;
  • R3 – 953 Ом;
  • VD1 – 1N5819.

Обратите внимание, что в данной схеме сумма входного и выходного напряжения не должна превышать 40 В.

Аналоги микросхемы MC34063

Если MC34063 предназначена для коммерческого применении и имеет диапазон рабочих температур 0 .. 70°C, то её полный аналог MC33063 может работать в коммерческом диапазоне -40 .. 85°C.
Несколько производителей выпускают MC34063, другие производители микросхем выпускают полные аналоги: AP34063, KS34063. Даже отечественная промышленность выпускала полный аналог К1156ЕУ5, и хотя эту микросхему купить сейчас большая проблема, но вот можно найти много схем методик расчетов именно на К1156ЕУ5, которые применимы к MC34063.

Если необходимо разработать новое устройство и какжется MC34063 подходит как нельзя лучше, то соит обратить внимание на более современные аналоги, например: NCP3063.

MC34063A описание, схема подключения. | Ремонт торговой электронной техники

Импульсный регулятор напряжения MC34063A (полный российский аналог КР1156ЕУ5) — специально разработанная микросхема для DC-DC преобразователей с минимальным количеством внешних элементов. Микросхема MC34063A применяется в импульсных источниках питания со входным напряжением от 3 до 40В и выходным током до 1,5А:

повышающих (Step-up converter)

понижающих (Step-down converter)

инвертирующих (Voltage inverting converter).

На практике приходилось встречаться только с вариантами источников питания

повышающих – Феликс 02К, цепь формирования 24В из 12В

понижающих – практически все фискальные регистраторы работающие от 24В, принтеры этикеток и прочее оборудование, где входное напряжение питания больше 5 вольт. Поэтому будем рассматривать только первые два варианта использования микросхемы MC34063A.

Рекомендуемая литература.

  1. Datasheet MC34063A на английском (скачать).

  2. Описание работы КР1156ЕУ5 (аналог MC34063A) на русском (cкачать).

  3. И.Л. Кольцов «33 схемы на КР1156ЕУ5» (скачать).

  4. Документ AN920/D. В данном документе приведены формулы для расчета преобразователей DC-DC на базе микросхемы MC34063. Рассмотрен принцип работы. (скачать).

Общее описание.











Рис. Структурная схема MC34063A (русский datasheet)Рис. Структурная схема MC34063A (английский datasheet)

Мощный электронный ключ на составном транзисторе (VT1 и VT2), который соединен со схемой управления. На нее поступают импульсы синхронизации от генератора, скважность которых зависит от сигнала схемы ограничения по току. Также на схему управления подается сигнал обратной связи с компаратора. Он производит сравнение напряжения обратной связи с напряжением внутреннего источника опорного напряжения. Стабильность параметров выходного напряжения микросхемы полностью обеспечивает источник опорного напряжения, т.к. его напряжение не зависит от изменений температуры окружающей среды и колебания входного напряжения.

Рис. Расположение выводов (pinout) MC34063A

Назначение выводов

Switch Collector (VT1) Коллектор выходного транзистора.

Switch Emitter (OUT) Эмиттер выходного транзистора.

Timing Capacitor (OSC) Вывод для подключения времязадающего конденсатора.

Ground (Gnd) Общий вывод.

Comparator Inverting Input (CMP) Вход компаратора — инвертирующий .

Vcc (Uin) Напряжение питания (3… 40В).

Ipk Sense (Rt) Вход схемы ограничения тока, сюда подключается токоограничивающий резистор. Ipk  пиковый ток через индуктивность, где Ipk <1.5А.

Driver Collector (VT2) Коллектор предвыходного транзистора.

Схема подключения.

Микросхема МС34063A имеет два входа, которые можно использовать для стабилизации тока.

Один вход имеет пороговое напряжение 1. 25В (5 нога), что для мощной нагрузки не выгодно из-за потерь мощности. Например, при токе 1000 мА имеем потери на резисторе-датчике тока величиной 1.25*1А=1.25Вт, что сопоставимо с потерями мощности на линейном стабилизаторе.

Второй вход микросхемы имеет пороговое напряжение 0.3В (7 нога), и предназначен для защиты встроенного транзистора от перегрузки по току.

Рис. Схема понижения (Step-down converter)

Рис. Схема повышения (Step-up converter)

С2— конденсатор задающий частоту преобразования.

VD1 – быстродействующий диод, практически вся схема зависит от быстродействия этого диода. При использовании диодов Шотки, диод должен выдерживать обратное напряжение вдвое превышающее выходное напряжение.

R1 – Токовый датчик, задает максимальный ток на выходе стабилизатора. При превышении максимального тока – микросхема отключится, фактически является  защитой от короткого замыкания (перегрузки) на выходе. Обладает довольно большой рассеиваемой мощностью, от  0,5 Вт до 2Вт, на практике иногда выглядит в виде нескольких параллельно включенных резисторов.




Важное замечание! Опорное напряжение токового входа микросхемы 34063 различается у разных корпусов, с разбросами от 0,25В до 0,45В. . Стандартные расчеты принимаются для опорного напряжения 0,3В. Таким образом если напряжение на шунте станет выше чем 0.3 вольта, микросхема 34063 отключится. (Например резистор R1=1 Ом, тогда при достижении U=1 Ом*0,3А=0,3В сработает защита по току и микросхема отключится. На практике это означает, что  при значении резистора R1=1 Ом выходной ток источника питания будет 0,3А).

R2, R3 — делитель напряжения, с помощью которого задается выходное напряжение.

Рис. Выходное напряжение, формула расчета.

Фильтр рассмотрим отдельно, так как именно фильтр является слабым звеном при эксплуатации.

L1 – накопительная и фильтрующая индуктивность. Данную индуктивность настоятельно не рекомендуется уменьшать, так же именно эта индуктивность задает выходной ток, поэтому толщина провода довольно критичный параметр.  На практике такая схема фильтра довольно редкое явление, как правило ставится второй LC фильтр, индуктивности включаются встречно.

С3 – принцип такой же как у катушки индуктивности. Несмотря на расчеты, если нет ограничения по размерам, конденсатор на 470 мкФ увидеть здесь довольно редкое явление. А вот конденсатор на 1000 мкФ здесь  общепринятый стандарт (рассматриваем схемы Uвх=24В, Uвых=5В). Конденсатор должен быть LOW ESR, однако на практике это довольно редкое явление, ставится обычный конденсатор. Хотя если поднять оборудование 2000-2002 г.в. то там можно встретить LOW ESR конденсаторы в фильтре. Некоторые производители ставят в параллель ВЧ конденсатор, однако это довольно спорное решение.




Конденсатор фильтра  для понижающих (Step-down converter) источников питания не является обязательным элементом, при достаточно большой индуктивности фильтра.

особенности практической реализации, простые устройства и калькулятор расчета

MC34063 представляет собой достаточно распространенный тип микроконтроллера для построения преобразователей напряжения как с низкого уровня в высокий, так и с высокого в низкий. Особенности микросхемы заключаются в ее технических характеристиках и рабочих показателях. Устройство хорошо держит нагрузки с током коммутации до 1,5 А, что говорит о широкой сфере его использования в различных импульсных преобразователях с высокими практическими характеристиками.

Описание микросхемы

Стабилизация и преобразование напряжения — это немаловажная функция, которая используется во многих устройствах. Это всевозможные регулируемые источники питания, преобразующие схемы и высококачественные встраиваемые блоки питания. Большинство бытовой электроники сконструированного именно на этой МС, потому что она имеет высокие рабочие характеристики и без проблем коммутирует достаточно большой ток.

MC34063 имеет встроенный осциллятор, поэтому для работы устройства и старта преобразования напряжения в различные уровни достаточно обеспечить начальное смещение путем подключения конденсатора ёмкостью 470пФ. Этот контроллер пользуется огромной популярностью среди большого количества радиолюбителей. Микросхема хорошо работает во многих схемах. А имея несложную топологию и простое техническое устройство, можно легко разобраться с принципом ее работы.

Как ШИМ рассматривать этот контроллер не стоит, так как в нем отсутствует немаловажный компонент – устройство коррекции ошибки. Из-за чего на выходе микросхемы может возникать погрешность. А для исключения ошибки на выходе рекомендуется подключать хотя бы простой LC-фильтр. Также она является одной из самых доступных в ценовом диапазоне, поэтому большинство полезных устройств сконструированы именно на этом контроллере.

Микросхема имеет небольшой запас по мощности, поэтому в критических режимах она вполне сможет выстоять, но кратковременно. Поэтому при разработке любых устройств на базе этого ШИМ следует грамотно выбирать параметры компонентов и производить расчет MC34063 в соответствии с режимами работы. А чтобы облегчить процесс расчета параметров устройств на базе этой интегральной схемы, можно воспользоваться mc34063 калькулятором.

Аналоги

Как и у любой интегральной схемы ШИМ-контроллер mc34063 имеются качественные аналоги, одним из которых является отечественная микросхема КР1156ЕУ5. Она имеет хорошие рабочие характеристики, которые станут основой для разработки качественных функциональных устройств с полезными возможностями.

Параметры микросхемы

MC34063 реализован в стандартном DIP-8 корпусе с 8 выводами. Также имеются компоненты для поверхностного монтажа без конкурса. ШИМ-контроллер MC34063 изготовлен достаточно качественно, о чем говорят немалые параметры, позволяющие создавать многофункциональные устройства с широкими возможностями. К основным рабочим характеристикам относятся:

  • Диапазон напряжений, которыми может манипулировать контроллер — от 3 до 40В.
  • Максимальный коммутируемый ток на выходе биполярного транзистора — 1,5А.
  • Напряжение питания — от 3 до 50В.
  • Ток коллектора выходного транзистора — 100мА.
  • Максимальная рассеиваемая мощность — 1,25Вт.

Выбирая за основу этот ШИМ-контроллер, вы обеспечите себя надёжным практическим макетом, который даст возможность качественно изучить особенности работы импульсных устройств и преобразователей напряжения.

Применяется микросхема во многих устройствах:

  • понижающие источники питания;
  • повышающие преобразователи;
  • зарядные устройства для телефонов;
  • драйверы для светодиодов и другие.

Типовая схема включения

Чтобы запустить контроллер достаточно обеспечить несколько условий, реализовать которые можно, имея в кармане пару конденсаторов, индуктивность, диод и несколько резисторов. Схема подключения контроллера зависит от требований, которые будут предъявлены к ней. Если необходимо изготовить ШИМ-стабилизатор, что довольно часто применяется на практике. Схема работает исключительно на понижение выходного напряжения, которое зависит от отношения сопротивлений, включенных в обратной связи. Выходное напряжение формируется делителем в соотношении 1:3 и поступает на вход внутреннего компаратора.

Типовая схема включения состоит из следующих компонентов:

  • 3 резистора;
  • диод;
  • 3 конденсатора;
  • индуктивность.

Рассматривая схему на понижение напряжения или его стабилизации можно увидеть, что она оснащена глубокой обратной связью и достаточно мощным выходным транзистором, который прямотоком пропускает через себя напряжение.

Схема включения на понижение напряжения и стабилизации

Из схемы видно, что ток в выходном транзисторе ограничивается резистором R1, а времязадающим компонентов для установки необходимой частоты преобразования является конденсатор C2. Индуктивность L1 накапливает в себе энергию при открытом транзисторе, а по его закрытию разряжается через диод на выходной конденсатор. Коэффициент преобразования зависит от соотношения сопротивлений резисторов R3 и R2.

ШИМ-стабилизатор работает в импульсном режиме:

При открытии биполярного транзистора индуктивность набирает энергию, которая затем накапливается на выходной ёмкости. Такой цикл повторяется постоянно, обеспечивая стабильный выходной уровень. При условии наличия на входе микросхемы напряжения 25В на ее выходе оно составит 5 В с максимальным выходным током до 500мА.

Напряжение можно увеличить путем изменения типа отношения сопротивлений в цепи обратной связи, подключенной к входу. Также он используется в качестве разрядного диода в момент действия обратной ЭДС, накопленной в катушке в момент ее заряда при открытом транзисторе.

Применяя такую схему на практике, можно изготовить высокоэффективный понижающий преобразователь. При этом микросхема не потребляет избыток мощности, которая выделяется при снижении напряжения до 5 или 3,3 В. Диод предназначен для обеспечения обратного разряда индуктивности на выходной конденсатор.

Импульсный режим понижения напряжения позволяет значительно экономить заряд батареи при подключении устройств с низким потреблением. Например, при использовании обычного параметрического стабилизатора на его нагрев во время работы уходило по меньшей мере до 50% мощности. А что тогда говорить, если потребуется выходное напряжение в 3,3 В? Такой понижающий источник при нагрузке в 1 Вт будет потреблять все 4 Вт, что немаловажно при разработке качественных и надёжных устройств.

Как показывает практика применения MC34063, средний показатель потерь мощности снижается как минимум до 13%, что стало важнейшим стимулом для ее практической реализации для питания всех низковольтных потребителей. А учитывая широтно-импульсный принцип регулирования, то и нагреваться микросхема будет незначительно. Поэтому для ее охлаждения не потребуется радиаторов. Средний КПД такой схемы преобразования составляет не менее 87%.

Регулирование напряжения на выходе микросхемы осуществляется за счёт резистивного делителя. При его превышении выше номинального на 1,25В компоратор переключает триггер и закрывает транзистор. В этом описании рассмотрена схема на понижение напряжения с выходным уровнем 5В. Чтобы изменить его, повысить или уменьшить, необходимо будет изменить параметры входного делителя.

Для ограничения тока коммутационного ключа применяется входной резистор. Рассчитываемый как отношение входного напряжения к сопротивлению резистора R1. Чтобы организовать регулируемый стабилизатор напряжения к 5 выводу микросхемы подключается средняя точка переменного резистора. Один вывод к общему проводу, а второй к питанию. Работает система преобразования в полосе частот 100кГц, при изменении индуктивности она может быть изменена. При уменьшении индуктивности повышается частота преобразования.

Другие режимы работы

Кроме режимов работы на понижение и стабилизацию, также довольно часто применяется повышающий. Схема подключения отличается тем, что индуктивность находится не на выходе. Через нее протекает ток в нагрузку при закрытом ключе, который отпираясь, подаёт на нижний вывод индуктивности отрицательное напряжение.

Диод, в свою очередь, обеспечивает разряд индуктивности на нагрузку в одном направлении. Поэтому при открытом ключе на нагрузке формируется 12 В от источника питания и максимальный ток, а при закрытом на выходном конденсаторе оно повышается до 28В. КПД схемы на повышение составляет как минимум 83%. Схемной особенностью при работе в таком режиме является плавное включение выходного транзистора, что обеспечивается ограничением тока базы посредством дополнительного резистора, подключенного к 8 выводу МС. Тактовая частота работы преобразователя задаётся конденсатором небольшой ёмкости, преимущественно 470пФ, при этом она составляет 100кГц.

Выходное напряжение определяется по следующей формуле:

Uвых=1,25*R3 *(R2+R3)

Используя вышеуказанную схему включения микросхемы МС34063А, можно изготовить повышающий преобразователь напряжения с питанием от USB до 9, 12 и более вольт в зависимости от параметров резистора R3. Чтобы провести детальный расчет характеристик устройства, можно воспользоваться специальным калькулятором. Если R2 составляет 2,4кОм, а R3 15кОм, то схема будет преобразовать 5В в 12В.

Схема на MC34063A повышения напряжения с внешним транзистором

В представленной схеме использован полевой транзистор. Но в ней допущена ошибка. На биполярном транзисторе необходимо поменять местами К-Э. А ниже представлена схема из описания. Внешний транзистор выбирается исходя из тока коммутации и выходной мощности.

Драйвер светодиодов

Довольно часто для питания светодиодных источников света применяется именно эта микросхема для построения понижающего или повышающего преобразователя. Высокий КПД, низкое потребление и высокая стабильность выходного напряжения – вот основные преимущества схемной реализации. Есть много схем драйверов для светодиодов с различными особенностями.

Как один из многочисленных примеров практического применения можно рассмотреть следующую схему ниже.

Схема работает следующим образом:

При подаче управляющего сигнала внутренний триггер МС блокирован, а транзистор закрыт. И через диод протекает зарядный ток полевого транзистора. При снятии импульса управления триггер переходит во второе состояние и открывает транзистор, что приводит к разряду затвора VT2. Такое включение двух транзисторов обеспечивает быстрое включение и выключение VT1, что снижает вероятность нагрева из-за практически полного отсутствия переменной составляющей. Для расчета тока, протекающего через светодиоды, можно воспользоваться: I=1,25В/R2.

Зарядное устройство на MC34063

Контроллер MC34063 универсален. Кроме, источников питания она может быть применена для конструирования зарядного устройства для телефонов с выходным напряжением 5В. Ниже представлена схема реализации устройства. Ее принцип работы объясняется как и в случае с обычным преобразованием понижающего типа. Выходной ток заряда аккумулятора составляет до 1А с запасом 30%. Для его увеличения необходимо использовать внешний транзистор, например, КТ817 или любой другой.

Повышающий DC-DC преобразователь на MC34063 (из 5В в 12В)

Повышающие DC-DC преобразователи находят широкое применение в электронике. Они могут применяться как отдельные модули питания конкретных объектов, так и могут входить в часть электрической схемы. Например, можно поднять напряжение пятивольтного аккумулятора и питать от него через повышающий преобразователь нагрузку напряжением 12В (усилитель, лампу, реле и т.д.). Еще пример, в некоторых охранно-пожарных сигнализациях на линиях контроля около 30В постоянного тока, а сам блок контроля и управления работает от 12В, поэтому в последние внедряют повышающие преобразователи и они являются частью схемы блоков контроля и управления.

Микросхема МС34063 представляет собой импульсный конвертор, поэтому она обладает высокой эффективностью (КПД) и имеет три схемы включения (инверторную, повышающую и понижающую). В этой статье будет описан исключительно повышающий (Step Up) вариант.

МС34063 выполняется в корпусах DIP-8 и SO-8. Расположение выводов показано ниже.

Основные технические параметры MC34063.

Входное напряжение ………. от 3 до 40 Вольт

Выходное напряжение ………. от 1.25 до 38 Вольт

Максимальный ток на выходе ………. 1.5 Ампер

Максимальная частота ………. 100кГц

Максимальный ток на выходе это пиковый ток на внутреннем транзисторе и он значительно больше тока нагрузки, поэтому не стоит надеяться, что преобразователь будет держать 1.5A на выходе. Ниже представлен калькулятор, который позволит правильно посчитать ток.

Другую интересующую информацию по параметрам и внутреннему устройству микросхемы можно найти в Datasheet.

Схема повышающего DC-DC преобразователя на MC34063.

Опишу работу простыми словами.  В микросхеме MC34063 есть генератор, генерирующий импульсы с определенной частотой. Генератор, взаимодействуя с другими узлами, управляет выходным транзистором, коллектор которого соединен с выводом 1, а эмиттер с выводом 2.

Когда выходной транзистор открыт, дроссель L1 заряжается входным напряжением через резистор R3.

После закрытия выходного транзистора, дроссель отключается от земли и в этот момент происходит его разряд (самоиндукция). Энергия дросселя уже с противоположной полярностью и большая по силе поступает на диод VD1. После выпрямления напряжения диодом, оно поступает на выход схемы, накапливаясь в конденсаторе C3. Помимо накопления, данный конденсатор сглаживает пульсации.

Схема конвертирует напряжение постоянного тока с 5В до 12В. Чуть ниже пойдёт речь об изменении номиналов элементов под нужные напряжения.

Резисторами R1 и R2 задается напряжение на выходе. Резистор R3 ограничивает выходной ток до минимума, при превышении определенной мощности.

Конденсатор C2 задает частоту преобразования.

Элементы.

Все резисторы мощностью 0.25Вт кроме R3 (0.5-1 Ватт).

В качестве L1 я взял готовый дроссель на 470мкГн, намотанный медным эмалевым проводом на гантель из феррита и отмотал три слоя, уменьшив тем самым индуктивность до 75мкГн (индуктивность больше расчетной допускается, а меньше нельзя).

Дроссель должен выдерживать пиковый выходной ток (в моем случае 1.5А).

Также можно взять кольцо из порошкового железа (жёлтого цвета) наружным диаметром 18мм, внутренним 8мм, толщиной 8мм и намотать медным проводом (диаметром 0.6мм и более) 30-40 витков (при 30 витках индуктивность получилась 55мкГн). Кольцо можно взять больше моего, но меньше не рекомендую.

Диод VD1- Шоттки, либо быстродействующий (типа SF, UF, MUR, HER и т.д.) на ток не менее 1А и обратное напряжение в два раза больше выходного (в моем случае 40В).

У микросхемы МС34063 есть отечественный аналог КР1156ЕУ5, они полностью взаимозаменяемы.

Расчет преобразователя на MC34063 под другое напряжение и ток.

Расчет займет не более одной минуты. Для этого необходимо воспользоваться On-line калькулятором расчета параметров МС34063. Помимо номиналов программа высчитает пиковый выходной ток, и в случае его превышения выдаст сообщение.

Калькулятор считает минимальную индуктивность, поэтому ее можно брать с положительным запасом (произойдут незначительные изменения лишь в КПД).

Пару слов…

Расчетная частота (50кГц в моем случае) является минимальной и может значительно отличаться и изменяться в зависимости от входного напряжения и тока нагрузки.

При выходном токе 200мА происходит достаточно сильный нагрев микросхемы MC34063, и работать в таком режиме долгое время возможно не сможет.

Рекомендую использовать MC34063 в тех случаях, когда нужно питать слаботочную часть схемы или отдельную нагрузку током до 150-250мА, а для нагрузки 3-5А предлагаю обратить внимание на повышающие DC-DC преобразователи, построенные на базе UC3843 и UC3845.

Печатная плата повышающего преобразователя на MC34063 (из 5В в 12В) СКАЧАТЬ

Datasheet на MC34063 СКАЧАТЬ

Похожие статьи

Понижающий DC/DC преобразователь 12/9,5В 2,5А на микросхеме MC34063 (с внешним p-канальным полевым транзистором) или самодельное автомобильное зарядное устройство для нетбука

Идея создания этого преобразователя возникла у меня после покупки нетбука Asus EeePC 701 2G. Маленький, удобный, гораздо мобильнее огромных ноутбуков, в общем, красота, да и только. Одна проблема — надо постоянно подзаряжать. А поскольку единственный источник питания, который всегда под рукой — это автомобильный аккумулятор, то естественно возникло желание заряжать нетбук от него. В ходе экспериментов обнаружилось, что сколько нетбуку не дай, — больше 2 ампер он все равно не возьмет, то есть регулятор тока, как в случае зарядки обычных аккумуляторов, нафиг не нужен. Красота, нетбук сам разрулит сколько тока потреблять, следовательно, нужен просто мощный понижающий преобразователь с 12 на 9,5 вольт, способный
выдать нетбуку требуемые 2 ампера.

За основу преобразователя была взята хорошо известная и широко доступная микросхема MC34063. Поскольку в ходе экспериментов типовая схема с внешним биполярным транзистором зарекомендовала себя мягко скажем не очень (греется), было решено прикрутить к этой микрухе p-канальный полевик (MOSFET).

Схема:

Катушку на 4..8 мкГн можно взять со старой материнской платы. Видели, там есть кольца, на которых толстыми проводами по несколько витков намотано? Ищем такую, на которой 8..9 витков одножильным толстым проводом — как раз самое то.

Все элементы схемы рассчитываются по типовой методике, так же, как и для преобразователя без внешнего транзистора, единственное отличие — Vsat нужно посчитать для используемого полевого транзистора. Сделать это очень просто: Vsat=R0*I, где R0 — сопротивление транзистора в открытом состоянии, I — протекающий через него ток. Для IRF4905 R0=0,02 Ом, что при токе 2,5А дает Vsat=0,05В. Что называется, почувствуйте разницу. Для биполярного транзистора эта величина составляет не менее 1В. Как следствие — рассеиваемая мощность в открытом состоянии в 20 раз меньше и минимальное входное напряжение схемы на 2 вольта меньше!

Как мы помним, для того, чтобы р-канальный полевик открылся — надо подать на затвор отрицательное относительно истока напряжение (то есть подать на затвор напряжение, меньше напряжения питания, т.к. исток у нас подключен к питанию). Для этого нам и нужны резисторы R4, R5. Когда транзистор микросхемы открывается — они образуют делитель напряжения, который и задает напряжение на затворе. Для IRF4905 при напряжении исток-сток 10В для полного открытия транзистора достаточно подать на затвор напряжение на 4 вольта меньше напряжения истока (питания), UGS = -4В (хотя вообще-то правильнее посмотреть по графикам в даташите на транзистор сколько нужно конкретно при вашем токе). Ну и кроме того, сопротивления этих резисторов определяют крутизну фронтов открытия и закрытия полевика (чем меньше сопротивление резисторов — тем круче фронты), а также протекающий через транзистор микросхемы ток (он должен быть не более 1,5А).

Готовый девайс:

В общем-то, радиатор можно было даже поменьше взять — преобразователь греется незначительно. КПД данного устройства около 90% при токе 2А.

Вход соединяете с вилкой для прикуривателя, выход — со штекером для нетбука.

Если не страшно, то можете вместо резистора Rsc просто поставить перемычку, как видите, лично я так и сделал, главное ничего не коротнуть, а то бумкнет 🙂

Скачать плату в формате Sprint-Layout 5.0. Плата разведена под использование SMD резисторов и конденсатора C1. Да, и еще одно. Эта печатка не для того, чтобы её утюгом переносить, а чтобы дырочки наметить. Рисуйте маркером на плате, причем рисуйте дороги потолще, чтобы теплоотвод был получше. На чертеже показан вид сверху (со стороны деталей).

Если достать р-канальный полевик — проблема, читайте как собрать понижающий DC/DC преобразователь 12/9,5В 2,5А на микросхеме MC34063 с внешним n-канальным полевиком (MOSFET). С N-канальником, кстати, понижайка ещё лучше получается.

Пересчитав описанный выше конвертер на другие выходные напряжения и токи, можно изготовить автомобильные зарядные устройства и для других нетбуков.

Описание принципов работы микросхемы MC34063

Кроме того, хотелось бы добавить, что типовая методика совсем не идеальна в плане расчётов и ничего не объясняет, поэтому если вы хотите реально понять как всё это работает и как правильно рассчитывается, то рекомендую прочитать вот эту трилогию о понижающих преобразователях напряжения.

Расчет повышающих DC-DC преобразователей на микросхемах 34063 (топология Boost) + online-калькулятор

Рассмотрим типовую схему повышающего DC/DC конвертера на микросхемах 34063:

Выводы микросхемы:

  1. SWC (switch collector) — коллектор выходного транзистора
  2. SWE (switch emitter) — эмиттер выходного транзистора
  3. Tc (timing capacitor) — вход для подключения времязадающего конденсатора
  4. GND — земля
  5. CII (comparator inverting input) — инвертирующий вход компаратора
  6. Vcc — питание
  7. Ipk — вход схемы ограничения максимального тока
  8. DRC (driver collector) — коллектор драйвера выходного транзистора (в качестве драйвера выходного транзистора также используется биполярный транзистор)

Элементы:

L1 — накопительный дроссель. Это, в общем-то, элемент преобразования энергии.

С1 — времязадающий конденсатор, он определяет частоту преобразования. Максимальная частота преобразования для микросхем 34063 составляет порядка 100 кГц.

R2, R1 — делитель напряжения для схемы компаратора. На неинвертирующий вход компаратора подается напряжение 1,25 В от внутреннего регулятора, а на инвертирующий вход — с делителя напряжения. Когда напряжение с делителя становится равным напряжению от внутреннего регулятора — компаратор переключает выходной транзистор.

C2, С3 — соответственно, выходной и входной фильтры. Емкость выходного фильтра определяет величину пульсаций выходного напряжения. Если в процессе расчётов получается, что для заданной величины пульсаций требуется очень большая емкость, можно расчет сделать для бо’льших пульсаций, а потом использовать дополнительный LC-фильтр. Ёмкость С3 обычно берут 100 … 470 мкФ.

Rsc — токочувствительный резистор. Он нужен для схемы ограничения тока. Максимальный ток выходного транзистора для MC34063 = 1.5А, для AP34063 = 1.6А. Если пиковый переключаемый ток будет превышать эти значения, то микросхема может сгореть. Если точно известно, что пиковый ток даже близко не подходит к максимальным значениям, то этот резистор можно не ставить.

R3 — резистор, ограничивающий ток драйвера выходного транзистора (максимум 100 мА). Обычно берется 180, 200 Ом.

Порядок расчёта:

  1. Выбирают номинальные входное и выходное напряжения: Vin, Vout и максимальный выходной ток Iout.
  2. 2) Выбирают минимальное входное напряжение Vin(min) и минимальную рабочую частоту fmin при выбранных Vin и Iout.
  3. Рассчитывают значение (ton+toff)max по формуле (ton+toff)max=1/fmin, ton(max) — максимальное время, когда выходной транзистор открыт, toff(max) — максимальное время, когда выходной транзистор закрыт.
  4. Рассчитывают отношение ton/toff по формуле ton/toff=(Vout+VF-Vin(min))/(Vin(min)-Vsat), где VF — падение напряжения на выходном фильтре, Vsat — падение напряжения на выходном транзисторе (когда он находится в полностью открытом состоянии) при заданном токе. Vsat определяется по графикам, приведенным в документации на микросхему (или на транзистор, если схема с внешним транзистором). Из формулы видно, что чем больше Vin, Vout и чем больше они отличаются друг от друга — тем меньшее влияние на конечный результат оказывают VF и Vsat, так что если вам не нужен суперточный расчет, то я бы посоветовал, уже при Vin(min)=6-7 В, смело брать VF=0, Vsat=1,2 В (обычный, средненький биполярный танзистор) и не заморачиваться.
  5. Зная ton/toff и (ton+toff)max решают систему уравнений и находят ton(max).
  6. Находят емкость времязадающего конденсатора С1 по формуле: C1 = 4.5*10-5*ton(max).
  7. Находят пиковый ток через выходной транзистор: IPK(switch)=2*Iout*(1+ton/toff). Если он получился больше максимального тока выходного транзистора (1.5 …1.6 А), то преобразователь с такими параметрами невозможен. Нужно либо пересчитать схему на меньший выходной ток ( Iout) , либо использовать схему с внешним транзистором.
  8. Рассчитывают Rsc по формуле: Rsc=0,3/IPK(switch).
  9. Рассчитывают минимальную емкость конденсатора выходного фильтра:
  10. С2=Iout*ton(max)/Vripple(p-p), где Vripple(p-p) — максимальная величина пульсаций выходного напряжения. Разные производители рекомендуют умножать полученное значение на коэффициент от 1 до 9. Берётся максимальная ёмкость из ближайших к расчётному стандартных значений.
  11. Рассчитывают минимальную индуктивность дросселя:
    L1(min)=ton(max)*(Vin(min)-Vsat)/IPK(switch). Если получаются слишком большие C2 и L1, можно попробовать повысить частоту преобразования и повторить расчет. Чем выше частота преобразования — тем ниже минимальная емкость выходного конденсатора и минимальная индуктивность дросселя.
  12. Сопротивления делителя рассчитываются из соотношения Vout=1,25*(1+R2/R1).

Online-калькулятор для расчёта преобразователя:

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Исходные данные:

(если вы не знаете значения Vsat, Vf, Vripple(p-p) , то расчёт будет сделан для Vsat=1.2 В, Vf=0 В, Vripple(p-p)=50 мВ)

2) Расчётные данные:

Готовые схемы для самостоятельного изготовления преобразователей

Описание принципов функционирования микросхем импульсных регуляторов серии 34063

SP34063 — MaxLinear

MaxLinear Inc. («MaxLinear») настоящим предоставляет Пользователю данной модели IBIS / BSDL для конкретного продукта MaxLinear неисключительную, непередаваемую лицензию на использование этой модели IBIS / BSDL для конкретного продукта MaxLinear на следующих условиях.

Перед использованием этой модели IBIS / BSDL для конкретного продукта MaxLinear пользователь должен прочитать следующие ограничения использования. Если Пользователь не принимает эти условия, модель IBIS / BSDL для конкретного продукта MaxLinear не должна использоваться или загружаться.

Пользователю предоставляется эта лицензия только на использование модели IBIS / BSDL для конкретного продукта MaxLinear для внутреннего использования, и ему не предоставляются права на продажу, ссуду, аренду, аренду или лицензирование модели IBIS для конкретного продукта MaxLinear / BSDL в полностью или частично, или в измененной форме кому-либо, кроме Пользователя. Пользователь может изменить модель IBIS / BSDL для конкретного продукта MaxLinear в соответствии с его конкретными приложениями, но права на производные работы и такие модификации принадлежат MaxLinear.

Эта модель IBIS / BSDL для конкретного продукта MaxLinear предоставляется на условиях «КАК ЕСТЬ», и MaxLinear не дает абсолютно никаких гарантий в отношении информации, содержащейся в данном документе.MaxLinear ОТКАЗЫВАЕТСЯ И ПОЛЬЗОВАТЕЛЬ ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ГАРАНТИЙ, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ ГАРАНТИИ КОММЕРЧЕСКОЙ ЦЕННОСТИ ИЛИ ПРИГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ. Весь риск в отношении качества и производительности лежит на Пользователе. Соответственно, компания MaxLinear НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ УБЫТКИ, ВКЛЮЧАЯ ЛЮБЫЕ УПУЩЕННЫЕ ПРИБЫЛИ ИЛИ ДРУГИЕ СЛУЧАЙНЫЕ, КОСВЕННЫЕ, ПРИМЕРНЫЕ ИЛИ КАРАТНЫЕ УБЫТКИ, ВОЗНИКАЮЩИЕ В РЕЗУЛЬТАТЕ ИСПОЛЬЗОВАНИЯ ИЛИ ПРИМЕНЕНИЯ ПРОДУКЦИИ MaxLinear. BSDL. Кроме того, MaxLinear оставляет за собой право вносить изменения без предварительного уведомления для повышения надежности, функциональности или дизайна.MaxLinear не передает никаких лицензий на патентные права или любые другие права интеллектуальной собственности, включая права третьих лиц.

MaxLinear не обязана обеспечивать обслуживание или поддержку модели IBIS / BSDL для конкретного продукта MaxLinear.

% PDF-1.3
%
1 0 obj
> поток

конечный поток
endobj
2 0 obj
> / MediaBox [0 0 612 792] / Аннотации [9 0 R 10 0 R 11 0 R 12 0 R 13 0 R 14 0 R 15 0 R 16 0 R] / Повернуть 0 >>
endobj
4 0 obj
> поток
x = eU & Q4bxp; wȧV (# R ~; 0eE% P? BlM [‘ЦmA
Ук2-ПЛ
«Zk}> x} LoTe [
} L & Ś
P • gAU: g + ¨ ~ JYl.Z1S5PL
u% ֕ 3 kdCL ~ V + RZUĂ #) elftPn \ hQs] w @ lδ + $] & ¦rpc ~ ̪r ~ y

ML34063 Лист данных | MDC — Datasheetspdf.com

ML34063

Абсолютные максимальные рейтинги

Параметр

Входное напряжение

Диапазон входного напряжения компаратора

Напряжение коллектора переключателя

Переключатель напряжения эмиттера (VPin 1 = 35 В)

Переключить напряжение с коллектора на эмиттер

Напряжение коллектора привода

Переключатель тока коллектора

Ток переключения

Рассеиваемая мощность на

TA = 25 oC

ПДИП-8

SO-8

Термическое сопротивление

ПДИП-8

SO-8

Рабочая температура окружающей среды

Температура хранения

Символ

VIN

VIR

VC (переключатель)

VE (переключатель)

VCE (коммутатор)

VC (привод)

IC (переключатель)

ISW

Pd

Топр

Тстг

Рейтинги

35

-0.3–35

35

35

35

35

100

1,5

1250

625

100

160

-0 ~ +70

-65 ~ +150

Шт.

В

В

В

В

В

В

мА

А

мВт

oC / Вт

oC

oC

Электрические характеристики (VCC = 5 В, TA = 25OC, CT = 1 нФ, если не указано иное.)

Осциллятор

Параметр

Частота

Ток заряда

Ток разряда

Отношение тока разряда к току заряда

Напряжение датчика предельного значения тока

Символ

fOSC

Ичг

Idichg

Idischg / Ichg

Vipk (смысл)

Условия

VPin 5 = 0 В

VCC = от 5,0 В до 35 В

VCC = от 5,0 В до 35 В

Контакт 7 к VCC,

Ichg = Idischg

Мин. Тип Макс. Единиц

24 33 42 кГц

24 35 42 мкА

140 220 260 мкА

5.2 6,5 7,5

250300350 мВ

Выходной переключатель (Примечание 1)

Параметр

Напряжение насыщения, Дарлингтон

Подключение

Напряжение насыщения (Примечание 6)

Коэффициент усиления постоянного тока

Ток в отключенном состоянии коллектора

Компаратор

Параметр

Пороговое напряжение

Символ

VCE (сб.)

VCE (сб.)

hFE

IC (выкл.)

Условия

ISW = 1.0A, контакты 1, 8 подключены

ISW = 1.0A, RPin 8 = 82 Ом для VCC,

ISW = 1.0A, VCE = 5.0V

VCE = 35 В

Мин. Тип Макс. Единиц

1,0 1,3 В

0,45 0,7 В

50 75

0,01 100 мкА

Символ

Vth

Условия

Мин. Тип Макс. Единиц

1,225 1,25 1,275 В

Всего устройств

Параметр

Ток потребления

Символ

Условия

Мин. Тип Макс. Единиц

Icc VCC = 5.От 0 В до 35 В,

Контакт 7 = VCC ,, Vpin5> Vth ,,

Pin2 = GND, остальные контакты открыты

4,0 мА

Примечание: 1. Во время испытания используются импульсные методы с малой скважностью для поддержания температуры перехода, близкой к температуре окружающей среды.

возможных температур.

P2 / 5 Ред. B, июнь 2005 г.

Схема повышающего преобразователя переменного выходного напряжения постоянного тока в постоянный ток с использованием MC34063

В предыдущих руководствах мы продемонстрировали детальный дизайн повышающего преобразователя с 3,7 В до 5 В с использованием MC34063 и понижающего преобразователя с 12 В в 5 В с использованием MC34063.Сегодня мы будем использовать ту же микросхему MC34063 для создания схемы повышающего преобразователя постоянного тока в постоянный ток , которая может преобразовывать небольшое напряжение, такое как 3 В, в более высокое напряжение до 40 В. Итак, здесь MC34063 IC используется регулируемый преобразователь постоянного тока .

Необходимые компоненты

  1. Понижающий / повышающий преобразователь MC34063
  2. Резистор 0,22 Ом
  3. Резистор 180 Ом
  4. Резистор 2к2 Ом
  5. Потенциометр 50k
  6. 1N5819 Диод Шоттки
  7. 170uH Индуктор
  8. 330 мкФ Конденсатор
  9. Конденсатор 100 мкФ
  10. 1500pf Конденсатор
  11. Burgstips или винтовой зажим
  12. аккумулятор 9в
  13. Мультиметр
  14. Perf board, припой и утюг

IC MC34063

Распиновка MC34063 показана на изображении ниже.С левой стороны показана внутренняя схема MC34063, а с другой стороны показана распиновка.

MC34063 — это 1 . 5A Шаг вверх или шаг вниз или инвертирующий регулятор , благодаря свойству преобразования постоянного напряжения, MC34063 является ИС преобразователя постоянного тока.

Эта микросхема с 8 выводами имеет следующие функции:

  1. Каталожный номер с температурной компенсацией
  2. Цепь ограничения тока
  3. Генератор с регулируемым коэффициентом заполнения с активным сильноточным выходным переключателем драйвера.
  4. Принимает 3,0–40 В постоянного тока.
  5. Может работать при частоте коммутации 100 кГц с допуском 2%.
  6. Очень низкий ток в режиме ожидания
  7. Регулируемое выходное напряжение

Кроме того, несмотря на эти особенности, он широко доступен и намного экономичнее, чем другие ИС, доступные в этом сегменте.

Эта микросхема может использоваться как понижающий преобразователь (понижающий) и повышающий (повышающий) преобразователь путем изменения конфигурации оборудования и компонентов.

В повышающей конфигурации он может выдавать 175 мА при входном напряжении 8-16 В:

Принципиальная схема

Принципиальная схема преобразователя постоянного тока с регулируемым выходом приведена ниже:

Регулировка выходного напряжения преобразователя постоянного тока в постоянный MC34063

Здесь, в этом проекте, мы использовали этот чип для создания преобразователя постоянного напряжения с переменным выходным напряжением в качестве повышающего преобразователя с конфигурацией регулируемого напряжения.Здесь 9 В подается в качестве входного напряжения в схему, которое можно повысить примерно до 30 В с помощью потенциометра.

Формула для расчета выходного напряжения приведена ниже:

Выход = 1,25 (1+ (R2 / R1))

Здесь мы использовали R2 как 2.2k и R1 как 50k, поэтому выходное напряжение будет:

Vout = 1,25 (1 + (50k / 2,2k))

Выход = 29,65

Требуемое выходное напряжение можно получить, изменив значения R1 и R2.Вот как можно использовать эту небольшую схему с регулируемым выходом DC-DC преобразователя .

Также проверьте другие цепи регулируемого источника питания : регулируемый источник питания 0-24 В 3A с использованием LM338 и схемы регулятора переменного напряжения LM317.

Импульсный источник питания от 5 В до 48 В с использованием MC34063

Мне нужно было построить преобразователь постоянного тока с 5 В на 48 В. Поискав в Интернете образцы схем, я нашел схему, основанную на SG2534N. Что ж, у схемы были проблемы, и я потратил слишком много времени, пытаясь заставить ее работать.Я предполагаю, что SG2534N существует довольно давно, но количество понятной для любителей информации очень мало.

Но, возясь с SG2534N, я нашел довольно много ссылок на MC34063 IC. После недели небольшой удачи с SG2534N я заказал MC34063 на сайте mouser.com.

В ожидании запчастей потратил время просто экспериментировал с SMPS в целом.

Помимо того, что он дешевле (0,50 доллара по сравнению с 2,00 доллара), мне удалось запустить эту схему без особых проблем.

Список литературы

Во-первых, вот несколько ссылок:

Определение общей схемы схемы

Способ подключения пассивных компонентов к MC34063 зависит от того, какой тип источника питания вы создаете: повышающий, понижающий, повышающий-понижающий или инвертирующий. Я создаю схему повышения напряжения, поэтому общая схема схемы будет выглядеть так:

Есть несколько компонентов, которые имеют статические значения:

  • Cin — Этот конденсатор находится рядом с Vin и должен быть 100 мкФ.
  • R — Этот резистор должен быть 180 Ом.
  • D — это диод Шоттки достаточной мощности. Я использовал MBR1100RLG.

Мне нужно вычислить L, Rsc, Cr, C0, R1 и R2. Здесь на помощь приходит калькулятор. Чтобы использовать калькулятор, вам нужно знать

  • Vin — это минимальное входное напряжение. 5В по моим расчетам.
  • Vout — это необходимое выходное напряжение. 48В.
  • Iout — это выходной ток.Я хочу 25 мА (обратите внимание, что входной ток будет намного выше, чем выходной ток, когда я буду так далеко — в моих последних тестах требуется 220 мА при 5 В для генерации 25 мА при 48 В).
  • Vripple — пульсации напряжения на выходе. Я использовал для этого 1 мВ.
  • Fmin — минимальная частота. Чип работает на максимальной частоте 100 МГц, поэтому я использую именно его.

Используя эти требования, согласно калькулятору, пассивные значения должны быть:

 Ct = 366 пФ
Ipk = 593 мА
Rsc = 0.506 Ом
Lmin = 62 мкГн
Co = 2060 мкФ
R = 180 Ом
R1 = 1,5 кОм R2 = 56 кОм (47,92 В) 

Стоимость Co действительно велика. Когда я делаю расчеты вручную, я получаю 1/100 от этого. Я не знаю, насколько это точно, но если вы просто воспользуетесь калькулятором, я сомневаюсь, что значение Co велико.

Используя таблицу из таблицы данных TI, вот мои расчеты. Обратите внимание, что я беру значения Vf и Vsat из руководства «Как построить схему импульсного источника питания с MC34063».

Это дает мне:

  • Ct — 362пф. Ближайший из имеющихся у меня — 330 пф.
  • Ipk — пиковый входной ток должен быть 527 мА. Так что мой источник питания и катушка индуктивности должны выдерживать такой большой ток.
  • Rsc составляет 0,569 Ом. У меня 0,5 Ом, поэтому я буду использовать его (уменьшение сопротивления увеличивает ток).
  • л (мин) составляет 72 мкГн. Дроссель следующего размера, который у меня есть, — 100 мкГн.
  • Co составляет 20 мкФ. Единственные конденсаторы на 100 В, которые у меня есть, имеют емкость 47 мкФ, поэтому я буду использовать именно их (я считаю, что C0 — минимальное значение).

Мне просто не хватает R1 и R2. Я произвольно решил использовать резистор 100 кОм для R2, ​​поэтому мне просто нужно сделать некоторую алгебру, чтобы определить, каким должен быть R1:

Итак, если я установил R2 на 100 кОм, R1 должно быть 2674 Ом, или 2,7 кОм, как у меня.

Это сработало на удивление хорошо. Я получил около 48,5 В и мог потреблять 23 мА. Вот моя последняя схема:

22 января 2016 обновление:

Я нашел этот пост MC34063 в EEVBlog. Хотел бы я найти это раньше.Это все объясняет лучше, чем я могу.

Октябрь 2016 Обновление:

Один «совет», который я обнаружил позже, но забыл здесь зафиксировать: делайте все провода как можно короче.

Нравится:

Нравится Загрузка …

Связанные

Микросхемы электроники MC34063ADR2G Интегральная микросхема 1,5 А, повышающие / понижающие / инвертирующие регуляторы

MC34063A, MC33063A, NCV33063A

1.5 А, повышающие / понижающие / инвертирующие импульсные регуляторы

Серия MC34063A представляет собой монолитную схему управления, содержащую основные функции, необходимые для преобразователей постоянного тока в постоянный. Эти устройства состоят из внутренней температуры компенсированного опорный, компаратор, управляемый генератора рабочего цикла с активной схемой ограничения тока, водителем и высоким током переключателем выходного сигнала. Эта серия была специально разработана для включения в приложения понижающего и повышающего напряжения и инвертирования напряжения с минимальным количеством внешних компонентов.Дополнительную информацию о конструкции см. В замечаниях по применению AN920A / D и AN954 / D.

Характеристики

• Работа от 3,0 В до 40 В Вход

• Низкий ток в режиме ожидания

• Ограничение тока

• Выходной ток переключения до 1,5 A

• Регулируемое выходное напряжение

• Частотный режим до 100 кГц

• Точность 2% Ссылка

• Доступны пакеты без свинца

МАКСИМАЛЬНЫЕ РЕЙТИНГИ

Рейтинг

Символ

Значение

Блок

Напряжение источника питания

В CC

40

В постоянного тока

Диапазон входного напряжения компаратора

В ИК

−0.3 до +40

В постоянного тока

Напряжение коллектора переключателя

В C (переключатель)

40

В постоянного тока

Переключатель-эмиттер напряжения (В , контакт 1 = 40 В)

В E (переключатель)

40

В постоянного тока

Переключить напряжение с коллектора на эмиттер

В CE (переключатель)

40

В постоянного тока

Напряжение коллектора драйвера

V C (драйвер)

40

В постоянного тока

Ток коллектора драйвера (Примечание 1)

I C (водитель)

100

мА

Ток переключения

I SW

1.5

А

Рассеиваемая мощность и тепловые характеристики

Пластиковая упаковка, P, P1 Суффикс

T A = 25 ° C

П Д

1.25

Вт

Термическое сопротивление

R θJA

100

° C / Вт

Корпус SOIC, суффикс D

T A = 25 ° C

П Д

625

мВт

Термическое сопротивление

R θJA

160

° C / Вт

Рабочая температура перехода

Т Дж

+150

° С

Диапазон рабочих температур окружающей среды

Т А

° С

MC34063A

0 до +70

MC33063AV, NCV33063A

от −40 до +125

MC33063A

от −40 до +85

Диапазон температур хранения

T stg

от −65 до +150

° С

Напряжения, превышающие максимально допустимые значения, могут повредить устройство.Максимальные рейтинги — это только рейтинги стресса. Функциональная работа сверх рекомендуемых условий эксплуатации не подразумевается. Продолжительное воздействие нагрузок, превышающих рекомендуемые условия эксплуатации, может повлиять на надежность устройства.

1. Необходимо соблюдать максимальные пределы рассеиваемой мощности корпусом.

2. Устройства этой серии содержат защиту от электростатического разряда и превышают следующие тесты: Модель человеческого тела 4000 В согласно MIL-STD-883, метод 3015. Модель машины Метод 400 В.

3. Префикс NCV предназначен для автомобильных и других приложений, требующих управления сайтом и изменениями.

Типовая принципиальная схема

СХЕМА МАРКИРОВКИ ПОДКЛЮЧЕНИЕ ПИН

РАЗМЕРЫ УПАКОВКИ

SOIC − 8 NB

D СУФФИКС

ДЕЛО 751-07

ВЫПУСК AG

ПДИП-8

P, P1 СУФФИКС

ДЕЛО 626−05

ВЫПУСК L

.